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Abstract
Background Major Depressive Disorder (MDD) is associated with interoceptive deficits expressed throughout the 
body, particularly the facial musculature. According to the facial feedback hypothesis, afferent feedback from the 
facial muscles suffices to alter the emotional experience. Thus, manipulating the facial muscles could provide a new 
“mind-body” intervention for MDD. This article provides a conceptual overview of functional electrical stimulation 
(FES), a novel neuromodulation-based treatment modality that can be potentially used in the treatment of disorders 
of disrupted brain connectivity, such as MDD.

Methods A focused literature search was performed for clinical studies of FES as a modulatory treatment for mood 
symptoms. The literature is reviewed in a narrative format, integrating theories of emotion, facial expression, and MDD.

Results A rich body of literature on FES supports the notion that peripheral muscle manipulation in patients 
with stroke or spinal cord injury may enhance central neuroplasticity, restoring lost sensorimotor function. These 
neuroplastic effects suggest that FES may be a promising innovative intervention for psychiatric disorders of 
disrupted brain connectivity, such as MDD. Recent pilot data on repetitive FES applied to the facial muscles in 
healthy participants and patients with MDD show early promise, suggesting that FES may attenuate the negative 
interoceptive bias associated with MDD by enhancing positive facial feedback. Neurobiologically, the amygdala and 
nodes of the emotion-to-motor transformation loop may serve as potential neural targets for facial FES in MDD, as 
they integrate proprioceptive and interoceptive inputs from muscles of facial expression and fine-tune their motor 
output in line with socio-emotional context.

Conclusions Manipulating facial muscles may represent a mechanistically novel treatment strategy for MDD and 
other disorders of disrupted brain connectivity that is worthy of investigation in phase II/III trials.
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Introduction
Major Depressive Disorder (MDD) is a heterogeneous 
mental illness with complex and poorly understood 
pathophysiology, conceptualized as a disorder combin-
ing affective, behavioral, and cognitive symptoms [1]. 
In Western countries, somatic symptoms dominate the 
symptomatology in about two-thirds of cases [2–4]. Cli-
nicians and researchers who have explored the associa-
tion between depression and somatization have proposed 
that MDD is a disorder of impaired interoception and 
disturbed afferent bodily signals [5, 6]. In light of this 
hypothesis, treatments for MDD targeting disrupted 
interoceptive inference in emotional states, or “mind-
body” interventions, have been under active investi-
gation. Some notable examples include vagus nerve 
stimulation [7], botulinum toxin A (BONT-A) injec-
tions [8], and stellate ganglion block [9]. Another novel 
intervention based on a similar mechanistic model is 
functional electrical stimulation (FES), where some pre-
liminary research has demonstrated modulatory effects 
on mood in healthy participants [10] and patients with 
MDD [11] when applied to the facial muscles involved in 
emotional expression.

FES is a neuromuscular stimulation technique that 
delivers a low-energy electrical current to skeletal mus-
cles, causing them to contract and generate functional 
and purposeful movement [12]. In the literature, its func-
tion is often defined as the activation of neuromuscular 
units that may or may not be under voluntary control 
[13]. At the neural level, such activation induces changes 
in the afferent inputs projecting from those neuromuscu-
lar units, leading to the activation of the corresponding 
circuits within the central nervous system (CNS) [14–
17]. The therapeutic applications of the FES have been 
extensively researched in stroke [18–20] and spinal cord 
injury (SCI) [21, 22]. FES has been used as a prosthesis 
to replace lost function and as a form of rehabilitation to 
retrain function, with the end goal of enabling a patient 
to execute movement without the assistance of a stimula-
tion device. Furthermore, FES has been successfully used 
to restore both motor and sensory function [23], with 
common examples including auditory and visual neuro-
prostheses to reinstate hearing and vision, respectively.

Recent studies have shown that functional recov-
ery post-FES is accompanied by plasticity in the CNS, 
increasing activity in regions where the activated muscles 
are represented topographically [14–17]. With the mech-
anisms of neuroplasticity being transdiagnostic [24], this 
narrative review introduces the basic principles of FES, 
provides an overview of prevailing clinical applications in 

psychiatry, and discusses its prospects as a tool for non-
invasively altering neural circuits in MDD.

Emotions and facial expressions in depression: four 
hypotheses
Facial expressions corresponding to six or more emo-
tions (e.g., fear, anger, happiness, sadness, surprise, and 
disgust) are well-defined and considered universal across 
cultures [25–27]. These expressions can be voluntary 
(routed through the pyramidal motor system; i.e., motor 
cortex) or involuntary (routed through the extrapyrami-
dal motor system; i.e., subcortical nuclei) [10]. The latter 
reflects “genuine” emotional experiences: for example, a 
voluntary smile without emotional input is produced for 
social purposes and generally involves only the zygomati-
cus major muscle, which raises the corners of the lips. In 
contrast, a spontaneous expression of positive emotion is 
more likely also to involve the orbicularis oculi muscles, 
which form “crows-feet” wrinkles at the lateral canthi of 
the eyes; a combination known as a “Duchenne smile” 
[28, 29]. Voluntarily generating and purposefully holding 
a facial expression has been demonstrated to be capable 
of eliciting a corresponding emotion [30, 31], which sug-
gests that “mind-body” interventions modulating facial 
expressions may benefit individuals with disorders of dis-
turbed affect, such as MDD.

Electromyographic studies of automatic facial expres-
sion highlight the differences between patients with 
MDD and healthy controls in facial expression changes 
characterizing particular social situations [32–34]. 
Research investigating facial expressions in MDD points 
to the attenuation of voluntary smiles produced by the 
zygomaticus major muscle [35, 36]. Yet, there is no con-
sensus regarding other facial expressions: some studies 
report an attenuation of the facial musculature associated 
with negative-valence emotions [32, 36, 37], whereas oth-
ers report their potentiation [38–40]. Possible explana-
tions of these findings stem from four main hypotheses 
explaining facial behavior in depression: (i) the mood-
facilitation hypothesis, (ii) the emotion-context insensi-
tivity hypothesis, (iii) the social risk hypothesis, and (iv) 
the facial feedback hypothesis.

The mood-facilitation hypothesis states that affective 
states match the likelihood and intensity of correspond-
ing facial expressions, with depression characterized 
by potentiated facial expressions in response to nega-
tive-valence states and attenuated facial expressions in 
response to positive-valence states [41, 42]. The emo-
tion-context insensitivity hypothesis, however, pos-
tulates that depression is a defensive motivational state 
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of disengagement from the environment; it is directed 
toward conserving resources by inhibiting overall emo-
tional reactivity, which manifests in attenuated facial 
expressions [43]. Third, the social risk hypothesis views 
depression as a reflection on one’s engagement with the 
social context, particularly with threats of social exclu-
sion [44]. Facial expressions are tailored to the social 
context (primarily through signaling submission and 
withdrawal) to protect oneself from anticipated social 
exclusion in the form of rejection or contempt. Thus, 
patients with severe depression will likely smile less and 
display facial expressions associated with scorn. In con-
trast, those with less severe depression are more likely to 
show signals indicating that they are willing to affiliate 
with the social context [34].

Another prominent theory explaining the associa-
tion between facial expressions and affective states is the 
facial feedback hypothesis. Rooted in Charles Darwin’s 
and William James’s early views [45, 46], it posits that 
facial movement directly influences emotional experi-
ence [47]. Specifically, the physiological activation of 

facial muscles associated with expressions correspond-
ing to specific emotions directly elicits those emotional 
states, whereas the lack of such activation leads to their 
suppression or total absence [48]. Different versions of 
the facial feedback hypothesis argue about the relative 
importance of facial feedback in the initiation of affec-
tive states [49]. The necessity version holds that no emo-
tion can be experienced without facial feedback [50]. 
On the opposite end, the sufficiency version claims that 
facial movement alone can elicit an associated emotion 
[51]. Lastly, the modulation version views the emotional 
experience as elicited by some external stimulus or cue 
outside of one’s own facial movements, whereby a signal 
from facial afferents plays a modulatory role in initiating 
and maintaining the affective state [52].

A substantial body of work has been devoted to study-
ing the association between facial movements and spe-
cific emotions. Human facial movements have been 
taxonomized by the Facial Action Coding System (FACS), 
with attempts to systematically categorize the physical 
manifestation of emotions [53]. The classical approach 
involves asking participants to generate specific facial 
expressions and record changes in self-reported emo-
tional experiences [49]. Studies using this approach gen-
erally conclude that the induction of smile-related facial 
expressions leads to enhanced positive affect. In contrast, 
the inhibition of smile-related expressions through the 
activation of antagonistic muscle groups leads to its dimi-
nution [52, 54–56]. A second approach involves the pre-
sentation of emotionally charged stimuli and instructing 
participants to suppress induced facial movements or to 
constantly maintain neutral facial expressions [49]. This 
paradigm results in a reported decrease of both positive 
and negative emotions upon voluntary suppression of 
facial expressions and bodily movements [57–59].

Functional electrical stimulation for major depressive 
disorder
The neurorehabilitative effects of FES in stroke [18–20] 
and SCI [21, 22], with the associated changes in the plas-
ticity of the CNS [12, 60, 61], raise the possibility that 
FES could be successfully used to treat psychiatric disor-
ders of disrupted brain connectivity, such as MDD [62]. 
Peripheral bottom-up activation through sensorimo-
tor channels appears to modulate depression symptoms 
[63], wherein the amygdala serves as a gateway assigning 
emotional significance to sensory and motor events [64, 
65]. Some notable examples of mood-regulatory effects 
of sensorimotor systems are depressive symptoms associ-
ated with inadequate vision and hearing impairment [66, 
67]. Other recognized phenomena include psychomotor 
agitation and retardation [68, 69], stress- or emotion-
induced postural adjustments and gait [70], as well as an 
ameliorative effect of physical exercise on mood [71].

Fig. 1 Bilateral functional electrical stimulation of facial muscles. 
Cutaneous electrode placement for the functional electrical stimula-
tion of bilateral zygomaticus major and orbicularis oculi muscles for the 
treatment of major depressive disorder. Created with BioRender.com, 
RRID:SCR_018361.

 



Page 4 of 11Demchenko et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:64 

It is hypothesized that through the activation of the 
zygomaticus major and orbicularis oculi muscles (Fig. 1), 
FES may generally upregulate the activity of sensorimo-
tor systems due to the direct effect of electrical stimu-
lation on muscle contraction and increase in muscle 
tone. In turn, this has the potential to directly facilitate 
neuroplastic rewiring of the primary and secondary 
motor cortices and modulate extrapyramidal pathways 
involved in the generation of involuntary motor expres-
sions of emotions – a physiological mechanism largely 
informed by neurorehabilitative effects of FES in stroke 
and SCI [12, 60, 61]. The subcortical nuclei of the extra-
pyramidal system are tentatively linked to the metacog-
nitive component of facial expressions, bridging patterns 
of specific motor activity with emotions [72, 73]. Given 
this perspective, repetitive activation of the zygomati-
cus major and orbicularis oculi (the “Duchenne smile” 
muscles) would strengthen the extrapyramidal pathway 
associated with positive emotions, whereas breaking the 
habit of activating the procerus and corrugator supercilii 
“frown” muscles would weaken the extrapyramidal path-
way associated with negative emotions. This may lead to 
mood improvements and could potentially account for 
restoring perturbed sensorimotor balance responsible 
for symptoms of psychomotor retardation or agitation. 
In this section, we review existing evidence concerning 
the effect of FES on mood modulation and introduce a 
potential neural pathway that may be targeted by FES.

Functional electrical stimulation modulates emotions in 
healthy individuals
Zariffa et al. (2014) conducted a proof-of-concept study 
with transcutaneous facial FES of the “Duchenne smile” 
muscles to examine the ability of a single FES session 
to modulate mood-related effects [10]. They hypoth-
esized that FES might enhance the mood-related effects 

of voluntarily activating facial muscles with close neural 
connections to the subcortical nuclei regulating emo-
tions, such as the amygdala. Twelve healthy participants, 
who received FES and were asked to voluntarily move the 
target muscles at the time of stimulation, were compared 
to 12 participants in a control group who performed the 
same procedure without any stimulation. Study outcomes 
were the scores on the Positive and Negative Affect 
Schedule-X (PANAS-X) [74], which asks a participant to 
rate 60 words or expressions describing feelings on a 1 
to 5 scale according to how strongly they feel a particu-
lar emotion while completing the assessment. Those who 
received FES experienced changes on the “determined,” 
“daring,” “scared,” and “concentrating” base items of the 
PANAS-X, indicating that those emotions relevant to 
MDD could potentially be modulated by FES.

Functional electrical stimulation improves symptoms of 
major depressive disorder
Kapadia et al. (2019) conducted an open-label mixed-
methods study on individuals with moderate-to-severe 
MDD, exploring whether 10 FES sessions would lead to 
improvements in depressive symptoms [11]. In this study, 
10 participants with MDD received FES of the “Duch-
enne smile” muscles three times per week. Stimulation 
parameters were 150 µs biphasic pulses (pulse width of 
the first phase), 60  Hz, with amplitude in the range of 
1–15 mA, delivered for 20–25  min [10, 11]. The pulse 
duration and frequency were chosen during protocol 
development in the healthy volunteer study  [10]. The 
pulses were asymmetric with a 150 µs leading cathodic 
phase. The cathode was placed over the muscles’ motor 
point for muscle activation. Stimulation amplitudes were 
adjusted at each session such that the targeted muscles 
achieved visible contractions with no excessive discom-
fort or unwanted movement (e.g., the closing of the eye). 
All participants received 10 sessions of FES. Because 
several study participants requested more FES sessions 
around the midpoint of the study (after 4–5 participants 
were already treated), the study protocol was amended to 
allow up to 40 FES sessions. After the amendment was 
introduced, the participants were invited to continue 
therapy for up to 40 sessions if they wished (5 of the 10 
participants requested to undergo 40 FES sessions). All 
participants adhered to the treatment protocol.

The results were promising: participants experienced 
early improvements in depressive symptoms as mea-
sured by the Hamilton Depression Rating Scale (HAM-
D) [75] and Inventory of Depressive Symptomology 
(IDS) [76]. After completing 10 sessions, participants 
experienced a mean improvement on the HAM-D by 
8.1 (SD = 5.3) points (p = .005) and on the IDS by 14.0 
(SD = 11.1) points (p = .008) (Fig.  2). Eight participants 
(80%) showed a reduction of at least 30%, with 5 (50%) 

Fig. 2 Functional electrical stimulation improves symptoms of major 
depressive disorder. Distributions of depression scores measured in par-
ticipants with major depressive disorder (n = 10) at baseline and after 10 
sessions of bilateral functional electrical stimulation (FES) of the zygomati-
cus major and orbicularis oculi muscles. Both the (A) Hamilton Depression 
Rating Scale (HAM-D, p = .005); and (B) Inventory of Depressive Symptom-
atology (IDS, p = .008) scores were significantly reduced post-FES. Created 
with RAWGraphs 2.0 beta, using the data from Kapadia et al. (2019) [11].
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showing clinical response (defined as a reduction in the 
HAM-D by at least 50%) and 6 (60%) entering remission 
(defined as a HAM-D total score of 7 or below). Reported 
adverse events were minimal and typically included red-
ness or skin irritation underneath the stimulation site, 
and muscle soreness or discomfort. FES was well-toler-
ated, with the potential to be administered with limited 
clinician oversight.

Neurobiological mechanisms and target circuitry: role of 
the amygdala and emotion-to-motor transformation loop
Although patterns of neural activity corresponding to 
facial expressions are distributed across multiple facial 
motor brain areas, the neurons of the amygdala appear to 
play a key regulatory role. The amygdala functions within 
the larger network organization of the human brain, 
sending excitatory signals to the hypothalamic-pituitary-
adrenal axis, brainstem, and other limbic structures (e.g., 
anterior cingulate cortex, anterior insula) and receiving 
inhibitory projections from ventral striatum and frontal 
cortex [77]. The amygdala is the structure most robustly 
engaged in emotional processing [78–80]: functional 
magnetic resonance imaging (fMRI) connectivity stud-
ies have identified that it constitutes one of the key nodes 
within the salience and emotion network – a set of brain 
regions responsible for integrating sensory information 

to facilitate the allocation of attention toward significant 
stimuli, leading to behavioral decisions [64, 65]. Further, 
cellular studies [81, 82] have shown that an increase in 
the firing rate of amygdala neurons mainly occurs after 
the onset of the muscular activity corresponding to the 
movement of a facial muscle. In a common face process-
ing network, MDD patients exhibit hyperactivation of 
the amygdala in response to negative stimuli and hypo-
activation in response to positive stimuli, which forms 
mood-congruent processing bias [83].

Facial expressions are motor events generated through 
a sequence of reciprocal transformations between sen-
sory and motor processes informed by interoceptive 
bodily afferent inputs and extracted socio-emotional sig-
nificance of perceived signals [81]. Neurons of the amyg-
dala appear to be critical in (i) the sensory monitoring of 
generated facial expressions, (ii) selecting an appropriate 
facial expression upon evaluation of the social context, 
and (iii) being involved in the monitoring of the facial 
expression of self and others through a proposed mirror 
neuron system [81, 84, 85]. Moreover, original research 
[86–89] and review articles [81, 82] point to the exis-
tence of the emotion-to-motor transformation loop 
(EMTL) - a limbic-motor arc that adjusts facial expres-
sions based on the socio-emotional information coming 
from the environment (Fig. 3). The amygdala is the cen-
tral node of EMTL, which receives input, functions as 
the decision-making processing center, and projects the 
output [24, 87, 88]. Anatomically, it forms a closed loop 
with the anterior face area of the midcingulate (M3) and 
the anterior cingulate cortex [90]. In a feedback manner, 
neurons of area M3 project back to the basal nuclei of 
the amygdala, giving rise to further feedback projections 
to all subdivisions of the cingulate cortex [84, 90, 91]. 
Other evidence points to the role of interoceptive affer-
ents projecting to the amygdala and area M3 through the 
insula via the glossopharyngeal and vagus nerves [92, 93]. 
Therefore, the neurophysiological activity of the facial 
muscles induced by FES may send patterned propriocep-
tive and interoceptive bottom-up inputs to the amygdala 
through the cranial nerves and the brainstem, thus lead-
ing to neuroplastic changes in the EMTL.

With active FES applied to the zygomaticus major and 
orbicularis oculi “Duchenne smile” muscles, their respec-
tive contraction would potentiate proprioceptive and 
interoceptive afferent signals associated with a genu-
ine smile. The proprioceptive afferents convey signals 
of the physical state of the agent’s face; whereas intero-
ceptive afferents convey signals of the emotional state of 
the agent, signals of “social justification” to make a facial 
expression, and signals of self-awareness of one’s body. 
These afferent inputs would be relayed to the amygdala 
via the trigeminal, glossopharyngeal, and vagus nerves 
and corresponding brainstem nuclei; as well as the insula, 

Fig. 3 Emotion-to-motor transformation loop. Contraction of facial 
muscles relays proprioceptive (magenta) and interoceptive (purple) affer-
ent signals to the amygdala (AMYG) via the trigeminal, glossopharyngeal, 
and vagus nerves and corresponding brainstem nuclei. AMYG forms a 
feedback loop with the anterior face area of the midcingulate cortex (M3). 
The AMYG-M3 connectivity establishes the processing center responsible 
for decision-making to select and produce a facial expression in response 
to a particular emotional context. These limbic inputs further calibrate the 
final motor output of the corticobulbar motor system, where the contrac-
tion of the upper (green) and lower (orange) face muscles is modulated 
via two separate anatomical pathways and the facial nerve. Dashed arrows 
represent afferent inputs, dotted arrows represent the processing center, 
and solid arrows represent efferent outputs. Abbreviations: AMYG, amyg-
dala; CN V, cranial nerve V (trigeminal); CN VII, cranial nerve VII (facial); CN IX, 
cranial nerve IX (glossopharyngeal); CN X, cranial nerve X (vagus); INS, in-
sula; LC, locus coeruleus; LFN, lateral facial nucleus; M1, primary motor cor-
tex; M3, anterior face area of the midcingulate cortex; M4, caudal face area 
of the midcingulate cortex; MFN, medial facial nucleus; MTN, mesence-
phalic trigeminal nucleus; NTS, nucleus tractus solitarius; PBN, parabrachial 
nuclei; PMCvl, ventrolateral regions of the premotor cortex; SMA, supple-
mentary motor area. Created with BioRender.com, RRID:SCR_018361.
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in the case of interoceptive afferents. The feedback loop 
between the amygdala and area M3 establishes the pro-
cessing center responsible for selecting and producing a 
facial expression [81, 90, 93–95]. These limbic inputs fur-
ther calibrate the final motor output of the corticobulbar 
motor system, where the contraction of upper (e.g., orbi-
cularis oculi) and lower face (e.g., zygomaticus major) 
muscles is modulated via two separate anatomical path-
ways, involving supplementary motor area (SMA) for the 
upper face and caudal face area of the midcingulate (M4) 
and ventrolateral premotor cortex (PMCvl) for the lower 
face. Motor output modified by the limbic inputs further 
readjusts the proprioceptive and interoceptive signals 
that arise from the contracted facial muscles, forming a 
feedback loop.

Repetitive administration of active FES may thus acti-
vate both the upper (i.e., orbicularis oculi) and lower (i.e., 
zygomaticus major) face muscles, which will induce a 
sustained “Duchenne smile” experience. Through mech-
anisms of Hebbian plasticity, enhancement in motor 
contractility of the orbicularis oculi would upregulate 
M3 and SMA – parts of the ascending segment of the 
EMTL that calibrate the motor output to upper face 
muscles specifically. Moreover, the prolonged experience 
of the “Duchenne smile” and the associated experience 
of positive emotions would modify afferent input to the 
amygdala itself with reduced neuronal activity. Together, 
these two processes would potentiate the EMTL pathway 
responsible for the conversion of associated emotional 
experiences to motor events, leading (through the feed-
back loop) to amygdala downregulation and increased 
functional connectivity with the nodes of EMTL and 
downstream networks.

The existence of EMTL is supported by studies of 
BONT-A paired with fMRI [48, 96]. In these studies, 
using BONT-A to induce paralysis of frown muscles 
interrupted the activity of such circuitry and dampened 
emotional distress signals associated with frowning in 
depression [48, 96]. This led to improvements in mood 
and decreased activity in the amygdala, with baseline 
activity of the amygdala restored after the paralysis had 
expired [96]. Evidence from these BONT-A studies sup-
ports the notion that depressive symptoms and low mood 
can be improved in a “bottom-up” fashion by modulating 
facial muscles through the amygdala circuitry, which is 
congruent with the neuroplastic effects of FES.

Considerations for future studies
FES of the facial musculature is a novel experimental 
treatment that requires thorough investigation. To date, 
two preliminary studies (one in healthy individuals and 
one in individuals with MDD) yielded positive results 
regarding both the feasibility and effects of FES as a 
potential intervention for MDD [10, 11]. Further clinical 

trials are needed to demonstrate its superiority over 
placebo and non-inferiority over existing therapies. In 
regard to studying FES for MDD in future trials, one of 
the main goals is to optimize the number of sessions and 
stimulation parameters to target specific neuromuscular 
units with minimum discomfort and muscle fatigue. Fur-
ther clinical innovations are required to make FES a more 
accessible therapy, such as devising a take-home FES sys-
tem to make it customizable and to enable easy position-
ing of facial FES electrodes. Other potential avenues of 
research might include exploring the efficacy of regular 
physiotherapeutic exercises of the zygomaticus major 
and orbicularis oculi muscles to treat symptoms of MDD.

Stimulation parameters
Pulse duration, current amplitude, and frequency of FES 
have been researched extensively and have been recently 
reviewed for motor retraining in individuals with neu-
rological conditions [12, 18–20, 97–101]. For motor 
rehabilitation, the typically used values for muscles with 
intact peripheral innervation are pulse duration in the 
range of 150–400 µs (first phase) and the frequency of 
30-50 Hz, while the exact amplitude is typically adjusted 
on a per-patient basis to produce a functional yet com-
fortable muscle contraction based on the activated target, 
stimulation pattern, and total duration of stimulation [10, 
11, 21, 97, 101, 102].

Although the goal of motor rehabilitation using FES 
in individuals with stroke and SCI differs from FES for 
MDD (motor rehabilitation vs. mood improvements), 
both focus on the principles of neuroplasticity. FES, com-
bined with a voluntary effort by the participant, results in 
a successful execution of the desired movement, thereby 
completing the afferent-efferent loop, which facilitates 
neuroplastic changes. Based on this hypothesis, FES may 
strengthen the neural connections in the primary motor 
cortex and amygdala, leading to improved mood-related 
symptoms. Preliminary studies from our laboratory have 
used asymmetric pulses with a 150 µs leading cathodic 
phase, 1–15 mA amplitude, and 60  Hz pulse frequency 
to stimulate facial muscles [10, 11]. Although these 
parameters were well-tolerated by participants, further 
studies are required to determine the optimal stimula-
tion parameters for facial muscles. Importantly, factors 
such as the stimulator (e.g., rise time of the stimulation), 
electrodes, and waveforms may also affect comfort and 
amplitude of the delivered current required for muscle 
activation [102, 103].

Dosing, adverse effects, and contraindications
Although significant work has been undertaken to under-
stand the effects of FES in neurorehabilitation, no stud-
ies have systematically examined the optimal dosing 
or adverse events associated with FES. In some studies, 
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a minimum of 20 FES sessions were needed to detect a 
change in function, and 40 FES sessions were required to 
see a difference in the quality of life [104]. No significant 
adverse events have been reported regarding the toler-
ability and safety of FES. Common mild adverse events 
include redness underneath the electrodes, which typi-
cally dissipates within 24 h, and occasional muscle fatigue 
or soreness, which also typically resolves within 24  h 
without intervention [101, 105]. FES has some contra-
indications, including metal implants at the stimulation 
site, pacemakers, open wounds or rash at the electrode 
placement site [101, 106], uncontrolled autonomic dysre-
flexia [107], and epilepsy [108]. Moreover, target motor 
neurons have to be accessible for placement of the stimu-
lation electrodes. Finally, the patient must be cognitively 
able to follow the instructions and actively participate in 
the therapy process to obtain maximal therapeutic ben-
efits from FES. It is thus expected that adverse events and 
contraindications for the FES paradigm in MDD would 
not differ from those characterizing FES in neurorehabil-
itation, despite anatomical differences in the stimulation 
site and motor unit size.

Clinical innovations
Whereas pilot studies of FES therapy for MDD are 
encouraging, potential areas of further innovation have 
been identified. One of the most important concerns is 
the accessibility of treatment while preserving compli-
ance. In the pilot studies, participants indicated that 
coming into the clinic was challenging and suggested that 
using a device at home would help [11]. A home-based 
FES device would likely facilitate access to this inter-
vention. One challenge for a home-based FES device, 
particularly from a research perspective, would be the 
standardization of training time and electrode position-
ing [109]. Given the success of the in-person stimulation 
paradigm, one option would be to start the stimulation 
at the clinic for educational purposes, followed by vir-
tually supervised home-based stimulation sessions and 
FES self-administration. A method to facilitate donning 
the electrodes in the correct positions and keeping them 
attached to an individual’s face would help with usability 
and compliance. The design of FES accessories, such as 
masks with customized locations for compatible novel 
electrodes, could eliminate the requirement for a phys-
iotherapist to be present at every session and would also 
prevent the electrodes from falling off during treatment. 
Importantly, electrode detachment was another issue 
identified during FES sessions for MDD [11].

One study has demonstrated that home-based admin-
istration of another electrical stimulation modality for 
MDD, specifically the transcranial direct current stimu-
lation (tDCS), was feasible when participants visited 
the clinic once, followed by 3 virtual sessions to get 

acquainted with the procedure [110]. Home-adminis-
tered tDCS improved depressive symptoms; however, it 
was noted that computer literacy and manual dexterity 
requirements were limitations. In line with these obser-
vations, one recent review stated that appropriate train-
ing, the usability of the technique, appropriate ability 
and skills of the users, and some social interaction were 
all desirable for the effective use of remote electrical 
stimulation therapies [111]. To develop FES as a home-
administered therapy, tracking the use of the device and 
facilitating correct electrode placements will be needed. 
Following the supervised use of the device, logs could be 
created to track its use either on paper or through mobile 
applications.

Novel endophenotypes and biomarkers
The optimal frequency and duration of FES treatment 
required to induce acute response remain unknown, as 
is the course of positive therapeutic response. To better 
tailor FES therapy sessions to each participant, future 
studies shall focus on evaluating specific endopheno-
types of MDD that characterize and predict treatment 
response to FES. One of the approaches could be using 
the Research Domain Criteria (RDoC) framework [112], 
with the effects of FES assessed in a pre- and post-treat-
ment fashion on selected metrics corresponding to the 6 
functional domains of negative valence, positive valence, 
cognition, social processes, arousal and regulatory pro-
cesses, and sensorimotor processes. For instance, RDoC 
studies could include psychometric, behavioral, neuro-
imaging, physiological, and molecular metrics to provide 
mechanistic insight into how FES leads to changes in 
mood, how the EMTL and its nodes are modulated, and 
which patients may benefit from FES. In the long run, 
predictive biomarkers would facilitate the development 
of preventive FES therapy with optimal duration and fre-
quency that patients could self-deliver at home. It would 
also prompt a better understanding of the progression of 
MDD post-FES, leading to personalized FES therapies.

Conclusions
Rooted in facial feedback and neuroplasticity theories, 
FES is a promising novel intervention for MDD with 
established safety, feasibility, and practicality. This narra-
tive review summarizes a theoretical foundation behind 
the link between facial expressions and depression, 
reviewing evidence supporting the use of repetitive FES 
for MDD and its putative mechanisms of action. The use 
of FES for MDD is supported by feasibility and prelimi-
nary positive results. However, this area of research now 
requires the design and development of further phase 
II/III clinical trials that would focus on comparing its 
superiority over placebo (e.g., sham FES) and non-infe-
riority over other interventions. If proven efficacious, 
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transcutaneous facial FES therapy could offer an alter-
native neuromodulation-based treatment modality for 
MDD or other psychiatric disorders of disrupted brain 
connectivity, which would pose a minimal-to-no risk of 
adverse effects and would be easy to administer.
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