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ABSTRACT Objective: Upper limb (UL) impairment impacts quality of life, but is common after stroke.
UL function evaluated in the clinic may not reflect use in activities of daily living (ADLs) after stroke, and
current approaches for assessment at home rely on self-report and lack details about hand function. Wrist-
worn accelerometers have been applied to capture UL use, but also fail to reveal details of hand function.
In response, a wearable system is proposed consisting of egocentric cameras combined with computer
vision approaches, in order to identify hand use (hand-object interactions) and the role of the more-affected
hand (as stabilizer or manipulator) in unconstrained environments. Methods: Nine stroke survivors recorded
their performance of ADLs in a home simulation laboratory using an egocentric camera. Motion, hand
shape, colour, and hand size change features were generated and fed into random forest classifiers to detect
hand use and classify hand roles. Leave-one-subject-out cross-validation (LOSOCV) and leave-one-task-
out cross-validation (LOTOCV) were used to evaluate the robustness of the algorithms. Results: LOSOCV
and LOTOCV F1-scores for more-affected hand use were 0.64 ± 0.24 and 0.76 ± 0.23, respectively. For
less-affected hands, LOSOCV and LOTOCV F1-scores were 0.72 ± 0.20 and 0.82 ± 0.22. F1-scores for
hand role classification were 0.70 ± 0.19 and 0.68 ± 0.23 in the more-affected hand for LOSOCV and
LOTOCV, respectively, and 0.59 ± 0.23 and 0.65 ± 0.28 in the less-affected hand. Conclusion: The results
demonstrate the feasibility of predicting hand use and the hand roles of stroke survivors from egocentric
videos.

INDEX TERMS Computer vision, egocentric camera, hand function, outcome measures, stroke.
Clinical and Translational Impact Statement—The proposed wearable technology fills an important gap in
our ability to measure the impact of new interventions on the hand function of stroke survivors during ADLs
at home.

I. INTRODUCTION
Hemiplegia or hemiparesis is commonly experienced after
stroke. Unilateral motor deficit on the contralateral side of
the brain lesion leads to decreased quality of life. In par-
ticular, upper limb function is one of the determinants of
quality of life and independence after stroke [1]. An esti-
mated 65% of stroke survivors experience difficulties in their
activities of daily living (ADLs) as a result of upper limb
impairment, despite medication and rehabilitation [2]–[4].
Measuring the upper limb function of stroke survivors in
their daily life is vital to quantifying the impact of new

interventions and to designing personalized rehabilitation
plans.

Clinical upper limb function assessments for stroke sur-
vivors can measure different domains within the International
Classification of Functioning, Disability and Health (ICF)
developed by the World Health Organization. In particular,
the activity domain can be subdivided into capacity and per-
formance [5]. Capacity is defined as what a person can do in a
standardized environment, and reflects the performance that
can be achieved under ideal conditions for a given individual.
Performance is defined as what a person actually does in
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their usual environment. To date, most clinical upper limb
function assessments of activity after stroke are carried out in
a hospital or clinic, and thus focus on capacity. The only two
clinical assessments that capture the performance of stroke
survivors are self-reported questionnaires: theMotor Activity
Log [6] and the Stroke Impact Scale [7]. Self-reported ques-
tionnaires are hampered by attention deficiency and memory
loss, which are commonly affected after stroke [8]. A valid
and reliable clinical assessment to capture the upper limb
performance of stroke survivors at home is still lacking. As a
result, evaluating the true effectiveness of an intervention is a
major challenge.

The measurement of performance in addition to capacity
is particularly important in light of the fact that stroke sur-
vivors tend to use their more-affected hand less in their usual
environments. This phenomenon is known as learned nonuse:
more-affected hand movement is more effortful, which over
time reinforces the compensatory use of the less-affected
hand [9]. Studies have shown that the use of themore-affected
limb is low in hospital settings (except for rehabilitation
training) [10] as well as in the community [11]. Furthermore,
Rand and Eng reported that even when upper limb function
was improved after rehabilitation, stroke survivors were still
prone to predominantly use their less-affected sides [10].
These results demonstrate that hand function evaluated in
the clinic (capacity), does not reflect hand use in daily life
(performance).

In response to this challenge, the use of wearable technol-
ogy has been proposed to capture upper limb movements in
ADLs [11], [12]. Accelerometers are commonly applied to
record the upper limb use of stroke survivors in unconstrained
environments [10], [13]. Wrist-worn accelerometers record
arm movement but do not directly reflect hand movements.
Finger-worn accelerometers have more recently been inves-
tigated, but to date have mainly been used in well-defined
tasks in a laboratory setting [14]–[16] and only applied to
real living environments in a limited number of studies [12].
A magnetic sensor, the Manumeter, has also been used to
measure hand use in ADLs, however the device readings were
reported to be sensitive to metal objects, such as utensils or
doorknobs, which are common household objects [17], [18].
Both IMU-based and magnetic sensors capture only body
movements and do not directly provide contextual informa-
tion that could identify functional use of the hands. Therefore,
there is still a need for alternative wearable technologies to
capture hand use in daily life.

An egocentric camera is a wearable device that records
videos from a first-person view. This technology has pre-
viously been used for life-logging and leisure applica-
tions [19], [20]. Because egocentric videos provide a clear
view of the user’s hands and the tasks being performed,
they have significant potential to measure hand use in
home environments. This approach would require auto-
mated video processing methods capable of extracting clin-
ically relevant information from large amounts of video
data.

Computer vision methods for the analysis of hand move-
ments in egocentric videos have been the focus of a num-
ber of previous investigations [21], dealing with problems
including hand detection [22], hand segmentation [23],
object detection/identification [24], [25], hand posture esti-
mation [26], [27], and activity recognition [28], [29]. In the
context of rehabilitation, the hand use of individuals with cer-
vical spinal cord injury (cSCI) was detected by applying com-
puter vision to egocentric videos, with promising results [30].
However, to the best of our knowledge, no previous work
has analyzed the hand function of stroke survivors using
egocentric video. Given the different disease symptoms and
movement compensation patterns between the unilateral and
bilateral hand impairments of stroke and cSCI, respectively,
it is not currently knownwhether a similar approach would be
successful in measuring hand use after stroke. Thus, the first
aim of the present study was to demonstrate the feasibility
of quantifying the hand use of stroke survivors during ADLs,
using computer vision methods applied to egocentric video.

An additional consideration specific to understanding the
hand use of individuals with hemiparesis is the role that the
more-affected hand plays in bimanual interactions. Two hand
roles during bimanual ADLs were examined in this study:
stabilizer and manipulator [31]. Manipulators require more
in-hand coordination, involving fine movements between fin-
gers (fine motor), compared to stabilizers, which keep a
fixed contact area between the hand and object during an
interaction. The role played by the more-affected hand in
bimanual object interactions depends on the level of upper
limb impairment and hand dominance [31]. Classifying hand
roles may offer a better understanding of the level of hand
function and ADL performance of stroke survivors in their
living environment. The second aim of our study was there-
fore to classify the role played by the more-affected hand
during bimanual interactions in egocentric video.

II. METHODS AND PROCEDURES
A. PROCEDURE
Individuals who experienced a stroke were invited to par-
ticipate in this study, which was approved by the Research
Ethics Board of the University Health Network. Each partic-
ipant made two visits to a home simulation laboratory at the
Toronto Rehabilitation Institute –University Health Network.
During the first visit, informed consent was obtained and
clinical upper limb assessments were carried out to ensure
that the inclusion criteria were met. In the second visit, par-
ticipants carried out a series of ADLs while recording ego-
centric videos. These videos were used to train and evaluate
two classifiers: one to detect interactions between the hands
and objects in the environment (hand-object interactions) in
each video frame, and the second to classify the role of the
more-affected hand in bimanual interactions. The definition
of a hand-object interaction is the manipulation of an object
by the hand(s) for a functional purpose. For example, a hand
resting on a table or swinging during walking would not be
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FIGURE 1. Instances of daily tasks performed by study participants.
(a) Slicing a banana on a living room table (b) opening and pouring some
water from a water bottle to a cup.

considered to be interacting, since no object ismanipulated by
the hand.Within the context of interactions, the definition of a
stabilizer is that the hand is statically in contact with an object
without changing the contact area between the hand and the
object. In contrast, a hand is deemed to be amanipulator when
it moves an object with the contact area changing over time.
The rationale for this problem formulation is that hand-object
interaction detection can be used as the basis for metrics
reflecting independent use of the hand in ADLs at home,
whereas the hand role classification can provide more insight
specifically into use or non-use of the more-affected hand.
Specific procedures for each step of the study are detailed in
the following sections.

B. STUDY SAMPLE
Nine individuals who had experienced a stroke participated
in this study. The upper limb impairment status and the func-
tional performance of the participants were evaluated using
the Fugl-Meyer Assessment for Upper Extremity (FMA-
UE) [32], the Action Research Arm Test (ARAT) [33], and
the Motor Activity Log (MAL) [34]. The inclusion criteria of
study participants were: 1) at least six months post-stroke;
2) self-reported impact of more-affected hand on ADLs;
3) impaired but not absent hand function, defined as a total
ARAT score above 10 [35]; 4) Montreal Cognitive Assess-
ment above 21, to avoid potential cognitive difficulties [36];
5) no subluxation or significant pain when using upper limb;
6) no other neuromusculoskeletal disease affecting upper
limb movements other than stroke.

C. VIDEO DATA COLLECTION PROCEDURE
A head-mounted egocentric camera (GoPro Hero 5, GoPro
Inc., San Mateo, CA, USA) was used to record how par-
ticipants conducted 38 ADLs across six different room set-
tings in the home simulation laboratory (see Supplementary
Material). These included for example a food cutting task in
a living room (Fig. 1 (a)) and a drink preparation task at a
kitchen counter (Fig. 1 (b)). The participants were informed
of what tasks to perform but not instructed on how to perform
them. The egocentric videos were recorded at 1280×720 res-
olution with 30 frames per second and analyzed at 640× 360
resolution. Portions of the videos were manually annotated
frame-by-frame for interactions and hand roles according to
the definitions above. A total of 81 tasks were chosen to be
annotated. These varied between participants and included

FIGURE 2. Analysis pipeline for hand-object interaction and hand role
classification, with key methods for each step: hand detection, hand
segmentation, feature extraction, interaction detection and hand role
classification. (YOLOv2: You Only Look Once version 2; HSV: Hue,
Saturation, and Value; HOG: Histograms of Oriented Gradients).

FIGURE 3. Hand detection and segmentation instances. (a) Hand
bounding boxes (in green) were generated by YOLOv2 in each frame. The
red box shows a manually labeled hand location. (b) The hands were
segmented from the predicted (green) bounding boxes using UNET.

at least 6 tasks in different rooms from each participant in
the home simulation laboratory. In addition, 2 tasks with no
interactions per participant, consisting of each hand waving
in the air, were also annotated and included to balance the
dataset.

D. INTERACTION DETECTION
There were four steps to identify the hand-object interactions
and hand roles from the egocentric videos: hand detection,
hand segmentation, feature extraction and classification. The
analysis pipeline is shown in Fig. 2.

a: HAND DETECTION
A convolutional neural network, You Only Look Once ver-
sion 2 (YOLOv2) was trained in a previous study on indi-
viduals with cSCI to generate hand bounding boxes (green
boxes in Fig. 3 (a)) in each egocentric frame [22]. The same
network was applied here. Bounding boxes were manually
labeled when at least 50% of the hand was visible in the
frame. Evaluation was based on the Intersection over Union
(IoU), defined as the overlapping area between the predicted
and manually labeled bounding boxes (Fig. 3 (a) green and
red box, respectively) over the total area of the combined
boxes [37]. An IoU value closer to 1 denotes highly over-
lapping predicted and labeled hand locations. Here, an IoU
value above 0.15 was considered a true positive, or otherwise,
a false positive.

b: HAND SEGMENTATION
A pre-trained U-shape convolutional neural network,
UNET [38], [39], was trained on 4,080 frames from the
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FIGURE 4. The diagram of three regions used in calculation of the colour
and motion features: the hand region (a), the surrounding region (b) and
the background (c).

EgoHands dataset [40] and 507 frames from our dataset to
segment the two hands of the stroke survivors in our study.
The generated hand segmentations (Fig. 3 (b)) within the
bounding boxes were considered as hand regions and used
for feature extraction.

c: FEATURE EXTRACTION
Features based on colour, motion, and hand shape were
extracted, based on previous work on interaction detection
in cSCI [30]. Colour features used the Hue, Saturation and
Value (HSV) colour space. The HSV histogram difference
was calculated between the hand region (Fig. 4 (a)) and the
bounding box area surrounding the hand (Fig. 4 (b)), as well
as between the area surrounding the hand and the background
(Fig. 4 (c)), using the Bhattacharyya distance. Using the
colour differences as features is motivated by the idea that
when a hand is manipulating an object, distinct colours may
be present in the pixels close to the hand.

Motion features used optical flow differences between the
hand and its surrounding region, and between the background
and the region surrounding the hand. Optical flow differences
were quantified as the differences in the histograms of mag-
nitude and direction from a dense optical flow map, using
15 normalized bins. The rationale for using motion contrast
is that if an object is manipulated by a hand, the movement
velocity and direction in the region around the hand would be
similar to the hand region and different from the background.

Hand shape features were obtained by calculating a His-
togram of Oriented Gradients (HOG) on the re-sized bound-
ing boxes (40 × 72 pixels). 16 × 16 pixels were used per
a cell, and 2 × 2 cells per block to calculate the HOG
for hand shape. To reduce the dimensionality of the HOG,
principal component analysis (PCA) was applied to generate
60 principal components as the HOG feature vector.

d: INTERACTION DETECTION
All 81 annotated tasks were included for interaction detec-
tion. A binary random forest classifier with 150 trees was
used to predict hand-object interactions.

e: DATA POST-PROCESSING
Both the predictions and manual annotations were smoothed
by a moving average filter with a window of 120 frames
(4 seconds). Next, the filtered outputs were normalized by
subtracting theminimum value and then dividing by the range
of values in each task. The threshold for an interaction was set
at 0.5.

f: PERFORMANCE EVALUATIONS
After filtering and normalizing, the average F1 score, pre-
cision and recall of leave-one-subject-out (LOSOCV) and
leave-one-task-out cross validations (LOTOCV) were calcu-
lated to describe the performance of the hand-object interac-
tion detections. In the leave-one-task-out analysis [41], [42],
a single task from a single participant was left out for test-
ing; the training set therefore included other tasks from the
same participant, and in some cases similar tasks from other
participants. Eighteen no-interaction tasks were included in
the dataset but could not be used for the LOTOCV F1-score
calculations, since they contain no true positives. Thus, accu-
racy but not F1-score were evaluated for these tasks during
LOTOCV. The no-interactions tasks not being left out were
included in the training set in all cases.

g: CORRELATION BETWEEN F1-SCORES AND INTERACTION
PERCENTAGES
A potential challenge in the evaluation of the classifier is
that some individuals with stroke may use their more-affected
hands very little, resulting in few true positives, and therefore
unreliable estimates of precision and F1-score. To evalu-
ate this potential factor, we also examined the relationship
between the F1-score and the interaction percentage by com-
puting the Pearson correlation in SPSS. The interaction per-
centage was the number of interaction instances over the total
number of analyzed hand instances, for a given participant
and hand, based on ground truth annotations. An interaction
instance is when a hand interacts with an object in a frame.
The interaction percentage was used rather than the total
number of interaction instances in order to compensate for
the different lengths of the videos. Individuals who use their
hand very little, and thus are most susceptible to having insuf-
ficient evaluation data, are expected to have lower interaction
percentages.

E. INTERACTION FEATURE ANALYSIS
In order to evaluate the relative importance of the different
feature types, LOTOCV using one feature type at a time was
used to analyze features for the interaction classifications.
The features with the highest F1-scores in interaction detec-
tion were retained for use as well in the subsequent hand role
classification analysis.

F. HAND ROLE CLASSIFICATION
In addition to hand-object interaction detection, hand role
classification was included in order to investigate how
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TABLE 1. Demographic information and upper limb impairment severity of participants.

functional asymmetry (due to hemiparesis) would affect per-
formance of ADLs among stroke survivors. In addition to the
features retained from the interaction detection analysis, hand
size change was introduced as an additional feature for hand
role classification. The hand role classification analysis was
conducted using bilateral tasks only, which were manually
identified in the labeled videos. Within these tasks, hand size
change features were computed in frames where at least one
hand was annotated as interacting. This feature consisted of
a vector of differences in the number of hand segmentation
pixels between consecutive frames over the 10 subsequent
frames, normalized by the total number of hand pixels of
the current frame. This feature reflects fine movements and
was extracted for each hand in order to capture temporal
information indicating whether a hand was stabilizing or
manipulating an object.

Another binary random forest classifier with 150 trees was
used for the hand role classification. The predictions and
annotations were also smoothed and filtered with the same
method as interaction detections. The threshold to differenti-
ate hand role was set at 0.5. Predictions above threshold were
classified as manipulators, or otherwise, as stabilizers. Aver-
age F1-score, precision, recall and accuracy during LOSOCV
and LOTOCV were reported for the hand role classification
performance. As in the interaction detection case, accuracies
but not F1-scores were computed for the no-interaction tasks
in the LOTOCV hand role analysis.

III. RESULTS
The demographic information and severity of upper limb
impairments for the nine participants are shown in Table 1.
Participants had a range of upper limb severity levels accord-
ing to the total score of FMA-UE [43]: severe (< 25), mod-
erate (between 26 and 50), and mild (> 26) upper limb
impairment. Some participants had full scores of FMA-UE
or ARAT and still self-reported that they had some difficulty
with highly skillful tasks, such as writing. Therefore, they
fit the criteria of ‘‘self-reported impact of affected hand on
ADLs’’ and were included in the study. The resulting dataset

TABLE 2. Hand detection results of more-affected and less-affected
hands.

consisted of 51,454 frames, including 54% interactions and
46% non-interactions. Each participant had 8 or more tasks
across 6 rooms reported in this study. In the dataset, the
average total number of instances of more-affected and less-
affected hands across participants were 2,499.4± 1,641.3 and
3,631.7 ± 2,528.5, respectively.

A. HAND DETECTION
28,228 frames from 9 stroke survivors, including 19,388
frames with more-affected hands and 22,301 frames with
less-affected ones, were manually annotated with hand
bounding boxes to evaluate the hand detection accuracy.
IoU, F1-score, precision and recall for each hand are
shown in Table 2. The average IoU was 0.57 ± 0.06 and
0.69 ± 0.05 for more-affected and less-affected hands,
respectively. The average F1 score for more-affected hands
and less-affected hands were 0.81 ± 0.25 and 0.85 ± 0.17,
respectively. The lower average precision for more-affected
hands can be attributed in part to cases where the hands
were partially visible at the edge of the frame. As noted
above, we did not annotate any bounding boxes for hands
that were less than 50% visible, however the hand detector
was robust in predict bounding boxes for these incomplete
hand regions, which led to false positives. All predicted
bounding boxes were used to extract features for hand-object
interactions.

B. HAND-OBJECT INTERACTION DETECTION
The average results of LOSOCV and LOTOCV are shown
in Table 4. Overall results included all the instances from
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FIGURE 5. Average F1-scores, interaction percentages and pearson
correlations for more-affected hands, less-affected hands, and overall
instances of each participant.

both hands. In the overall results, the average F1-score across
subjects and tasks were 0.74± 0.15 and 0.78± 0.18, respec-
tively. The results showed that the algorithm was robust for
identifying the hand-object interactions of stroke survivors,
without considering whether the hand was more-affected or
less-affected.

For less-affected hands, the average F1-scores across sub-
jects and tasks were 0.72 ± 0.20 and 0.82 ± 0.22, respec-
tively. The average F1-scores for more-affected hands across
subjects and tasks were 0.64± 0.24 and 0.76± 0.23, respec-
tively. The lower F1-scores for more-affected hands might be
caused by low more-affected hand interaction percentages.
Fig. 5 shows the Pearson correlation results between F1-score
and interaction percentage for each participant. Significant
correlations were found in both more-affected (r = 0.93,
p < 0.01∗∗) and less-affected hands (r = 0.93, p < 0.01∗∗).
The higher the interaction percentage, the higher the F1-score
of interaction detection. The correlation for the combined
data from both hands was not significant (r = 0.55,
p > 0.05), which may be attributed to the variations in the
number of more-affected and less-affected instances included
across participants.

C. FEATURE ANALYSIS
The average F1-score and average accuracy of each feature
from 9 participants are shown in Table 3. The results showed
that optical flow and HOG had the highest F1-scores, which
were 0.78, for hand-object interaction detections. Therefore,
both optical flow and HOG were subsequently used to clas-
sify hand roles.

D. HAND ROLE CLASSIFICATION
There were 31,908 frames from 43 bimanual tasks used
for the hand role classifications. The bimanual task dataset
included 49% manipulator instances and 51% stabilizer

TABLE 3. Feature subset average F1-score and accuracy of
leave-one-task-out-cross-validation from 9 participants.

instances. Optical flow, HOG, and hand size change fea-
tures were used to detect hand roles in the samples anno-
tated with hand-object interactions in bimanual ADLs. The
average F1-score, precision, recall and accuracy are shown
in Table 5. The average F1-score of LOSOCV and LOTOCV
for more-affected hands were 0.70 ± 0.19 and 0.68 ± 0.23,
respectively. The LOSOCVandLOTOCVF1-score formore-
affected hands were both higher than the less-affected ones,
which were 0.59 ± 0.23 and 0.65 ± 0.28, respectively.
The average accuracies of LOTOCV for more-affected and
less-affected hands were 0.66± 0.26 and 0.67± 0.26, which
showed that the algorithm was able to identify hand roles,
stabilizers and manipulators, in unseen bimanual tasks for
both hands.

IV. DISCUSSION
In this study, LOSOCV and LOTOCV were used to evaluate
whether hand-object interactions and hand roles could be
automatically identified in egocentric videos of stroke sur-
vivors engaging in ADLs in a home simulation laboratory.
The results showed that detecting interactions and hand roles
of stroke survivors using this type of wearable technology
is feasible. The evaluations of interaction and hand roles
may serve as a basis for outcome measures that capture the
performance domain of the ICF, in contrast to the capacity
domain captured by clinic-based hand function assessments.
The trends in our results and possible reasons for them are
described below.

For hand-object interaction, the average F1-score of
LOTOCV was higher than LOSOCV, suggesting that includ-
ing interaction instances from the same participant in the
training and testing set led to better predictions. One possible
reason is that hand-object interaction instances were diverse
among participants, such that including some instances from
the same individual in the testing set can help improve pre-
dictions. Note that the testing set never contained examples
of the same individual performing the same task. In addition,
the average LOSOCV F1-score for more-affected hands was
only 0.64± 0.24, whichmight have been caused in part by the
differences in interacting hand posture across individuals, or
by insufficient interaction instances in the training set. These
results were obtained despite the fact that the training set
contained participants with similar levels of upper extrem-
ity impairment as the testing set. The hand postures used
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TABLE 4. Hand-object interaction results of each participant and average across leave-one-subject-out-cross-validation, and
leave-one-task-out-cross-validation.

TABLE 5. Hand role classification results of each participant and average across leave-one-subject-out-cross-validation, and
leave-one-task-out-cross-validation.

during interactions were varied across participants and tasks.
To illustrate these variations in hand postures, Fig. 6 provides
examples of different strategies being used for the same task.
These include using one hand or two hands (Fig. 6 (a)), and
using the less-affected hand or not to assist the more-affected
one (Fig. 6 (b)). Even a simple task which could be expected
to have less scope for variation, such as typing on a tablet, was
performed by two participants with similar upper extremity
impairment using different postures (Fig. 6 (c)).

In addition to the difference of hand posture, the other fac-
tor to impact the average interaction detection
F1-score was the interaction percentage. The interaction
percentage was determined by participants’ upper extremity
impairment levels and whether their more-affected hand

was the dominant hand pre-injury. Stroke survivors tend
to use their less-affected hands to perform ADLs due to
convenience, particularly if their dominant hand remains
less-affected. The interaction percentages of more-affected
hands tended to be lower than less-affected ones. The low
more-affected hand interaction percentage might lead to
insufficient more-affected hand interaction instances in the
testing samples for certain participants, providing fewer
opportunities for true positives and more opportunities for
false positives, thus reducing the precision and F1-score,
as observed in Fig. 5. Across the entire dataset, this trend
can also lead to fewer examples of interacting more-affected
hands overall. A potential solution to increase the interaction
instances of more-affected hands would be to apply data
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FIGURE 6. Examples of the same tasks being performed using different
strategies. (a) Plastic bag zipping tasks performed by one and both
hands. (b) Eating tasks carried out without and with help of less-affected
hand. Atypical hand postures of both hands were found when the
less-affected (right) hand assisted the more-affected (left) one. (c) Typing
tasks performed with different hand postures by two participants with
mild upper extremity impairments.

augmentation techniques such as rotating or re-sizing the
images to synthetically generate more instances.

For the identification of hand roles in bimanual ADLs,
variations in the size of the hand segmentation were used to
reflect finger movements, which are vital to distinguishing
manipulation from stabilization actions. Estimating hand size
changes from small hand regions and the occlusions of fingers
by held objects were the main obstacles to classifying hand
roles from egocentric videos. The hand role classification
performance was higher for the more-affected hands than
less-affected ones. A possible contributing factor for this
difference may be found in previous findings suggesting that
more-affected hands are used more often as stabilizers [31].
Stabilizers maintain static contact on objects, and their less
variable postures might be easier for the algorithms to iden-
tify. In contrast, less-affected hand mainly were reported to
act as manipulators, which included fast finger movements.
Additional features that can capture details of fine finger
motions should be explored in the future. Moreover, the hand
role results were only based on bimanual ADLs, leading to
a smaller number of instances compared with the interaction
results.

Previous attempts to capture hand use using wearable tech-
nology have focused on capturing body movement, while our
approach directly targets functional hand use. For example,
the Manumeter has been validated primarily for the accuracy
of the joint angle estimations [17]. Rowe et al. reported
the relationship between arm and finger movements during
functional tasks [44], but do not provide data on amount of
use that could serve as a comparison point for our results.
Liu et al. and Lee et al. explored the use of finger-mounted

accelerometers. Their evaluations included amounts of move-
ment, correlations with handedness questionnaires [12], and
accuracy in measuring relative movements between the fin-
gers and the wrist [16], but did not directly validate the
accuracy of the system for detecting functional hand use.
In contrast, the approach proposed here is unique in provid-
ing contextual information in addition to body movements,
and has been validated directly against ground-truth annota-
tions of functional hand use. Thus, scenarios such as non-
functional hand movements and static functional hand use
(e.g. using the affected hand to stabilize an object) can be
addressed. Conversely, limitations of the approach include
greater processing complexity and the fact that some hand-
object interactions may be missed if they occur outside the
field of view of the camera. Field of view problems did not,
however, occur in this study, and it is expected that individuals
with hand impairments would only infrequently carry out
manipulations without looking at the target object. While
the use of video collection in the home is accompanied by
privacy considerations, we have previously found the use
of egocentric cameras in the home to be feasible [45] and
acceptable [46].

Although this study provides a demonstration of feasibil-
ity and a baseline for performance, avenues exist to further
improve the detection of hand-object interactions and the
classification of hand roles from egocentric video after stroke.
There were two limitations in this study. The first was the
small number of participants. Although the number of hand
instances in the egocentric video was sufficient for the pur-
poses of this study, interaction instances were more varied
across individuals after stroke compared to healthy individ-
uals. Recruiting more individuals with stroke or augmenting
the current dataset may be helpful to enhance the diversity
of the training set and enable the classifiers to capture the
desired information. The second was that only 3 feature types
were used to detect interactions and hand roles. The features
demonstrated feasibility and were based on a priori insights
about the problem and prior success in similar problems [30],
but might not be sufficient to capture complex hand move-
ments, especially among stroke survivors. A transition from
manually engineered features to deep learning may also be
beneficial to extract more details of finger movements and to
identify the interactions and hand roles of stroke survivors,
but will require greater amounts of data. The use of a home
simulation lab can be considered an additional limitation,
however our dataset is expected to be reflective of real home
conditions because of the variety in tasks and objects across
6 different room settings.

We expect that this study can benefit clinicians and
researchers by improving our understanding of the hand use
of stroke survivors during ADLs at home, and by provid-
ing valuable information that is not accessible in the clinic.
Frame-by-frame interaction detection results could be used
as the basis for new outcome measures reflecting the number,
frequency, or duration of functional interactions at home over
time, and possibly capturing aspects of the ICF performance
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domain not reliably captured by current outcome measures.
Further, the information could be used to develop individual-
ized rehabilitation plans for stroke survivors. While our focus
here was on detecting the amount of functional hand use,
egocentric video is a platform that can be used for additional
applications, such as postural analysis and recognition of
specific activities.

V. CONCLUSION
A wearable system based on egocentric video and machine
learning can provide the basis for quantifying hand use out-
side of clinical environments after stroke, as well as the
role of the more-affected hand in bimanual interactions. The
algorithms were able to detect interactions and hand roles
in unseen subjects and tasks. By capturing home ADLs
with this wearable system, the performance component of
hand function can be quantified and used to evaluate and
guide therapeutic plans for stroke survivors. Including some
subject-specific annotations in the training samples may
increase the accuracies of interaction and hand role predic-
tions. Larger datasets, additional features and deep learning
approaches should be explored to improve upon the feasibil-
ity demonstration provided by this study.
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