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Abstract

Computational studies can be used to support the development of peripheral nerve

interfaces, but currently use simplified models of nerve anatomy, which may impact the

applicability of simulation results. To better quantify and model neural anatomy across the

population, we have developed an algorithm to automatically reconstruct accurate periph-

eral nerve models from histological cross-sections. We acquired serial median nerve cross-

sections from human cadaveric samples, staining one set with hematoxylin and eosin

(H&E) and the other using immunohistochemistry (IHC) with anti-neurofilament antibody.

We developed a four-step processing pipeline involving registration, fascicle detection,

segmentation, and reconstruction. We compared the output of each step to manual ground

truths, and additionally compared the final models to commonly used extrusions, via inter-

section-over-union (IOU). Fascicle detection and segmentation required the use of a neural

network and active contours in H&E-stained images, but only simple image processing

methods for IHC-stained images. Reconstruction achieved an IOU of 0.42±0.07 for H&E

and 0.37±0.16 for IHC images, with errors partially attributable to global misalignment at the

registration step, rather than poor reconstruction. This work provides a quantitative baseline

for fully automatic construction of peripheral nerve models. Our models provided fascicular

shape and branching information that would be lost via extrusion.

1. Introduction

Neural interfaces (NIs) are systems that serve to exchange information between target neural

structures and artificial devices. NIs are used in neuroprosthetic systems aiming to restore sen-

sorimotor function after damage to the nervous system, as well as in neuromodulation systems

aiming to treat diseases through the alteration of regulatory neural signals. Applications of NIs

implanted in the peripheral nervous system include: restoring movement after paralysis [1];

creating prosthetic limbs with intuitive control and sensory feedback [2]; and treating
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conditions such as bladder dysfunction [3], epilepsy [4], hypertension [5], as well as inflamma-

tory and autoimmune disorders [6]. Despite their potential benefits, widespread implementa-

tion of NIs in the peripheral nervous system still faces several obstacles, including damage to

neural tissue, a lack of long-term stability, and low signal resolution [7]. These issues may be

solved, or at least mitigated, by improving the design of new NIs. Improvements may include

use of new materials or electrode designs, which have the potential to increase the effectiveness

and reliability of NIs.

An important part of the design process for new NI designs is computational modeling [8–

10]. To be useful, a model should contain sufficient detail to capture the relevant features of

the system of interest. Unfortunately, many existing peripheral nerve models used to design

and evaluate NIs have been based on simplified anatomy–either by extruding a single “realis-

tic” cross-section, or by assuming fascicles possess circular and/or elliptical cross-sections [11–

13]. Recent studies have shown that differences in peripheral neural anatomy, such as fascicu-

lar branching, can significantly alter the characteristics of neural recordings and the conclu-

sions drawn from a computational model. Using an anatomically accurate fascicular model

can for example alter the relative amplitudes across electrode recording sites, affecting conclu-

sions about selectivity [14]. Complementing this finding, implanting an electrode before or

after a fascicular branch has been shown to alter recording selectivity in vivo [15]. Thus,

computational models that accurately reflect fascicular anatomy will improve the validity

and applicability of the conclusions, and may ultimately lead to improved NI designs [13].

An anatomically accurate model of a peripheral nerve can be constructed using data

acquired from a variety of imaging modalities, including histological cross-sections, Micro-

Computed Tomography (MicroCT), Optical Projection Tomography (OPT), or Magnetic Res-

onance Imaging (MRI) [14,16,17]. To date, either fully manual or semi-automatic procedures

have been used to reconstruct peripheral nerve models from image data [17–19]. However, the

internal anatomy of peripheral nerves varies across the population, so simply acquiring one

fascicular model fails to capture the population-level variability that may be useful to inform

NI design or surgical decision making [20]. Considering the benefits of capturing population-

level anatomical data, coupled with the rapidly increasing interest in peripheral NIs for multi-

ple applications, this manual or semi-automatic construction of computational models

becomes non-feasible.

This paper introduces an image processing pipeline that, given a set of histological cross-

sections of a nerve, aims to automatically identify and segment fascicles, and reconstruct a 3D

model of a nerve’s internal fascicular anatomy. This tool is intended to greatly facilitate the

generation of peripheral nerve models, while improving their anatomic fidelity. These recon-

structions can replace simplified extrusion models to produce more accurate simulation out-

puts, incorporate statistical information about the population, and thus better inform the

design of future NIs. The system we developed ultimately proves to be a baseline for future

development, supported by quantitative data.

2. Materials and methods

A four-step process was used to process images: 1) registration of consecutive slices; 2) fascicle

detection; 3) fascicle segmentation; and 4) 3-dimensional reconstruction. Details of the data

acquisition and processing steps follow below.

2.1. Sample acquisition

Acquisition of high-quality nerve samples will allow for generation of the best possible quality

images for automatic registration and segmentation. Five median nerve specimens obtained
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from embalmed human cadaveric forearms were used. Exclusion criteria included any visible

evidence of deformities, previous surgery, or pathology. The cadavers were donated through

the Willed Body Program at the University of Toronto Division of Anatomy. Ethics approval

for use of the specimens was obtained from the University of Toronto, Health Sciences

Research Ethics Board (#27210). The median nerve was chosen as it is both relatively easy to

extract and relevant for the purpose of upper limb NI applications.

To obtain the nerve segments for histological analysis, all superficial tissues were removed to

expose the flexor digitorum superficialis muscle (FDS) and median nerve from the medial epi-

condyle to the nerve’s entry point into the muscle belly. Next, the median nerve and FDS were

excised proximally at the elbow and distally at the wrist. The excised specimen was placed in a

tray and the median nerve dissected to expose the intramuscular nerve branches. (Fig 1, top).

For histological analysis, two median nerve segments were obtained from each of the five

specimens. The proximal segment was obtained by ligating the nerve approximately 2 cm

proximal and distal to the first bifurcation point (4 cm segments). The distal segment consisted

of the same length of nerve proximal and distal to the second bifurcation point (Fig 1, bottom).

The proximal and distal nerve segments from two specimens (n = 4) were used to determine

optimal staining methods, while the remaining nerve segments (n = 6) were used for data

collection.

2.2. Histology

All histological processing was performed by the Centre for Phenogenomics (Toronto,

Ontario). The nerve segments were fixed in formalin, embedded in paraffin, and sectioned at

5μm thickness separated by 250μm intervals, resulting in 2–5 contiguous blocks of nerve slices

per segment. From each specimen, either the proximal or the distal segment was stained with

hematoxylin and eosin (H&E) and the other segment with anti-neurofilament antibody immu-

nohistochemistry (IHC) (Fig 2). The sections were mounted on glass slides, with 3–5 slices per

slide. Images were captured with an optical microscope (Olympus VS-120, Olympus Corpora-

tion, Tokyo, Japan) at 40x magnification. To facilitate further image processing, each slice was

Fig 1. Top: A length of median nerve surrounded by flexor digitorum superficialis muscle excised from a cadaveric

specimen. Bottom: The same sample, showing the nerve with the sections marked for extraction.

https://doi.org/10.1371/journal.pone.0233028.g001
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saved separately at 1.4x magnification (~5183 pixels per inch) and stored as a lossless TIFF

image. We collected a total of 130 images (10 blocks, 13 images per block) from the first speci-

men (65 H&E images from the proximal segment, 65 IHC images from the distal segment). A

total of 144 images (12 blocks, 12 images per block) were obtained from the second (36 H&E,

proximal segment/36 IHC, distal segment) and third (36 IHC, proximal segment/36 H&E,

distal segment) specimens. The images obtained from one of the three segments stained with

IHC showed no visible fascicles and was replaced. Any images that exhibited artifacts due to

tissue processing were excluded (n = 20). The final count of images used for testing the pipe-

line was 254 (Table 1). A directory containing the images used in this project is provided in

section 1.3 of the S1 Data accompanying this article.

2.3. Registration

Registration and all further processing was performed in MATLAB (r2018a, The MathWorks,

Natick MA). A directory containing the code used in the project is provided in section 1.3 of

the S1 Data accompanying this article. Prior to registration, preprocessing steps for H&E

stained images included an increase in local contrast (Edge Threshold 0.3, Enhancement 0.6)

and a sharpening to emphasize fascicles and fascicle boundaries. The image was then con-

verted to grayscale and processed via anisotropic diffusion filtering (5 iterations, exponential

Fig 2. Two sample nerve slices, one stained with H&E (top) and the other with IHC (bottom).

https://doi.org/10.1371/journal.pone.0233028.g002
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conduction method), a method which regularizes shape interiors while preserving edges [21].

Morphological opening- and closing-by-reconstruction followed. Structural element sizes or

erosion and dilation were set to disks of a conservative radius of 7 pixels, in order to prevent

loss of detail from morphological operations. Preprocessing for IHC images was minimal and

involved only a conversion to greyscale.

Preprocessed images were aligned automatically using intensity-based image registration

between consecutive slices with the stochastic gradient descent method (SGDM). We used a

four-step registration method similar to the MIAQuant method [22], sequentially applying the

registration four times. Each step used a different combination of registration types and image

scale. These were 1) translation only, using images resized to 25% of their initial resolution 2)

translation and rotation, using images resized to 50%, 3) translation, rotation, and scale, using

images resized to 75% (H&E) or full resolution images (IHC) and 4) translation, rotation,

scale, and shear using full resolution images. This multi-resolution procedure permits registra-

tion of gross image features first (minor details are lost when the image is scaled down), fol-

lowed by progressive fine-tuning. Rotation produced black regions around the edges of the

image. These were filled in with the background colour to prevent interference in registration.

2.4. Fascicle detection

To identify fascicles stained with H&E, a pre-trained convolutional neural network using the

VGG-16 network architecture was converted into a region-based convolutional neural net-

work (RCNN) for fascicle detection and retrained using the MATLAB neural network

toolbox on the Neuroscience Gateway [23]. Detection created a set of bounding boxes roughly

delineating the outer boundaries of the fascicles. Using a cross-validation process, the network

was trained, in turn, using two of the three sets of nerve images and tested using the third. The

three sets contained 1296, 2158, and 2388 annotated nerve fascicles. The three sets of images

were manually annotated with fascicle bounding boxes, which served as the ground truth to

evaluate the performance of the network. Two types of networks were tested; one using regis-

tered images for training, and the other using unregistered images. The parameters used for

training the network were as follows: a batch size of 128, an initial learning rate of 1�10−3, a

learning rate drop factor of 0.1, a learning rate drop period of 5 epochs, and a total training

period of 10 epochs. Inputs to the RCNN were raw, unprocessed images. Since the IHC images

showed high contrast between fascicular and non-fascicular tissue, a separate detection step

was not necessary.

2.5. Fascicle segmentation

For H&E slices, the bounding boxes proposed by the RCNN were used to generate circles

around each detected fascicle. The dimensions of the circle were derived from the size of the

Table 1. Summary of details related to nerve segments used to test the pipeline.

Specimen Segment Stain Contiguous Blocks Slices per Block

1 Proximal HE 5 9/13/13/13/12

1 Distal IHC 5 9/11/11/12/10

2 Proximal HE 3 12/12/12

2 Distal IHC 3 12/12/12

3 Distal HE 3 12/12/12

3 Proximal IHC 3 N/A (no neural tissue)

4 Distal IHC 2 16/17

https://doi.org/10.1371/journal.pone.0233028.t001
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bounding box. The image outside of these circles was removed to reduce the chance of mis-

segmentation. These circles then served as the initial mask for segmentation via Chan-Vese

active contours [24]. The Chan-Vese method used a smooth factor of 0.6 and a contraction

bias of 0.5. The images were then pre-processed once again, using the same method as in the

registration step. The contour then shrunk inwards until the border of the fascicle was

detected, or 500 iterations passed. For the IHC slices, an automatic threshold generated by

Otsu’s method [25], followed by image closing and hole-filling to account for non-uniform

staining, was sufficient to produce a binary mask.

2.6. Reconstruction

The final step of generating a 3D model of the fascicular anatomy was accomplished by linearly

interpolating between points on successive images within each block using a difference of dis-

tance maps [26]. The algorithm connected shapes at different points on the z-axis by interpolat-

ing the distance between any given pixel and the object boundary along the z-axis. Shapes could

be connected along the z-axis provided some overlap existed in the x-y plane. Two additional

steps complemented the interpolation. The first step compensated for missed detections and

mis-segmentations. Before reconstruction, the process checked the pixel indices of each fascicle

on each image against those same indices on the next image. If no fascicle was detected at a par-

ticular index, but appeared in any future layer (indicating a missed detection or mis-segmenta-

tion), a fascicle was inserted at each missing index to prevent discontinuous fascicles (“hole

fixing”, HF, compared to “no fixing”, NF). The second step was implemented to split errone-

ously merged fascicles and consisted of a watershed operation initialized using a distance map

derived from the fascicle segmentation. An erosion and another watershed followed, intended

to catch any large merged fascicles that the first watershed might have missed, though usually

unnecessary. The fascicles were then dilated back to their original sizes This process produced

one model for each block of nerve images, for a total of 21 fully automatic models.

2.7. Evaluation and analysis

2.7.1. Registration. Registration quality was calculated using two metrics: mean square

error (MSE) and structural similarity (SSIM). MSE decreases and SSIM increases upon a suc-

cessful registration. Net MSE and SSIM values, from before and after registration, were com-

pared using Friedman’s test with a significance value of 0.05. To determine whether or not

values were normally distributed, the Anderson-Darling test was used to indicate non-

parametric values.

2.7.2. Fascicle detection. Fascicle detection in the H&E slices was tested by comparing

automatically detected fascicle bounding boxes to the manually-labeled ground truth, using

the F1-score (harmonic mean of precision and recall) to quantify the accuracy of the detector.

An F1 score closer to 1 indicates high precision and recall. Any detected bounding box that

overlapped a ground truth bounding box with an intersection-over-union (IOU) threshold of

50% was determined to be a true positive detection. To provide a point of comparison for this

approach, the neural network detections were compared against Atherton-Kirby’s phase-

coded method for circle detection [27]. This method uses a modified version of the Circle

Hough Transform to detect circles in images.

2.7.3. Fascicle segmentation. For both H&E and IHC slices, segmentation quality was

tested by comparing the results of automatic segmentation to a manually segmented ground

truth via IOU. Ground truth segmentations were acquired by manually labelling fascicles

using MATLAB. When uncertainty existed as to whether or not a certain feature was indeed

neural tissue, the original microscope slides were consulted (viewed at up to 40x
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magnification) to ensure that the stained feature was indeed a fascicle. Segmentation by

active contours for the H&E slices was also compared to automatic thresholding using Otsu’s

method and K-means clustering.

2.7.4. Reconstruction. No objective ground truth regarding the 3D shape of the fascicles

was available to this project, since 3D imaging (e.g., MicroCT, OPT) was not performed prior

to histological sectioning. Thus, images were manually registered and combined with their

manual segmentations to make fully manual models, which represented our “gold standard”.

Our evaluation for the reconstruction involved calculating 3D IOU between the fully manual

models and the following, for two random blocks from each segment (total of six H&E and six

IHC blocks):

1. The corresponding fully automatic models.

2. The manually registered images made for the fully manual models were automatically seg-

mented (MRAS). This helped determine how differences in segmentation affected the

reconstruction method.

3. Automatically registered images were combined with manual segmentations (ARMS) to

make a second set of semi-automatic models. This helped determine differences in registra-

tion affected the reconstruction method.

Along with the output of the automatic and semi-automatic pipelines, an extrusion (EX)

generated from a manual segmentation of the first image in the block was compared to the

fully manual models.

3. Results

We tested the pipeline using a total of 11 blocks of H&E-stained images and 10 blocks of IHC-

stained images. Information on the total processing time is provided in Section 1 of the S1 Data.

3.1. Registration

The staining method had little effect on the quality of the automatic registration (Fig 3). Regis-

tration of the H&E images decreased MSE by 57.14 ± 65.61 (p� 0.001, n = 121) and increased

the SSIM by 0.03 ± 0.03 (p� 0.001, n = 121) (Fig 3, top). For the IHC images, registration

decreased MSE by 58.86 ± 43.10 (p� 0.001, n = 112) and increased SSIM by 0.09 ± 0.04 (p�

0.001, n = 112) (Fig 3, bottom).

3.2. Fascicle detection

The detection step for H&E slices produced a set of fascicle bounding boxes for each image

(Fig 4). The network trained on the original images had a precision, recall and F1-score of

0.92, 0.90, and 0.91, respectively. The network trained on the registered images performed

comparably, with precision, recall and F1-score of 0.91, 0.92 and 0.91, respectively. Both net-

works were tested in the subsequent segmentation step. In contrast, the circle detection

method performed worse, with precision, recall and F1-scores of 0.19, 0.45, and 0.27, respec-

tively. A separate detection step was not required for IHC slices. S1 Fig provides an illustration

of the detection step.

3.3. Fascicle segmentation

The segmentation outputs varied according to the method implemented (Fig 5, Table 2).

Active contour segmentations initialized using the neural network trained on the original,
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unregistered images showed the highest performance on all three segments, as well as overall,

with an IOU of 0.61±0.03. These segmentations were used for reconstruction. Otsu’s method

with follow-up morphological processing segmented the IHC slices well, with an IOU of 0.90

±0.09. S2–S4 Figs illustrate the processing methods used in the segmentation steps.

3.4. Reconstruction

The fully automatic, semi-automatic, and extruded models had similar IOUs, but qualitatively

differed in appearance (Figs 6 and 7, Table 3). EX had higher IOUs than the fully automatic

models for ten of the twelve examined blocks. Of the semi-automatic models, MRAS models

performed superior to EX and ARMS models. For H&E images, reconstruction with hole-fix-

ing of discontinuous fascicles marginally improved IOUs, while the opposite was true for IHC

Fig 3. A comparison of H&E images (top) and IHC images (bottom) before (left) and after (right) automatic

registration. Areas of pink and green show regions of dissimilarity, whereas grey shows aligned regions.

https://doi.org/10.1371/journal.pone.0233028.g003

Fig 4. Bounding boxes indicating the fascicle sizes and locations automatically detected using the RCNN, on a

sample histological slice.

https://doi.org/10.1371/journal.pone.0233028.g004
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images. In most models, the quantitative effect of hole-fixing was minor; the greatest impact

occurred in the third distal block of the second specimen, with a 1.88% increase in IOU (Fig

8). S5–S8 Figs illustrate the processing methods used in the reconstruction step.

4. Discussion

The goal of this project was to create an algorithm that can automatically reconstruct fascicular

branching patterns from consecutive cross-sections of peripheral nerves. The current pipeline

intends to alleviate the need for time intensive manual processes and facilitate the construction

of computational models for neuroprosthetic and neuromodulation applications. The pipeline

successfully generated models from images based on both H&E- and IHC-stained histological

slices. Contrary to expectation, some models produced using our fully automatic method were

Fig 5. Images illustrating the segmentation of individual fascicles from histological slices. Segmentations (red) are overlaid on the original H&E

image. A) Outside-in active contours B) Otsu’s Method C) K-means clustering.

https://doi.org/10.1371/journal.pone.0233028.g005

Table 2. Mean IOU±SD determined for each of the segmentation methods implemented on images from each staining method.

H&E Processing

Method/Segment 1 Proximal 2 Proximal 3 Distal All

Active contours initialized from RCNN (trained on original images) 0.64 ± 0.05 0.53 ± 0.06 0.64 ± 0.02 0.61 ± 0.03

Active contours initialized from RCNN (trained on registered images) 0.61 ±0.03 0.51 ± 0.03 0.58 ±0.02 0.57 ± 0.03

K-means 0.53 ±0.10 0.30±0.04 0.35 ±0.05 0.42 ± 0.04

Otsu’s Method 0.56 ± 0.16 0.48 ± 0.03 0.55 ± 0.00 0.54 ± 0.06

IHC Processing

1 Distal 2 Distal 4 Distal All

Otsu’s Method 0.88±0.14 0.95±0.01 0.87±0.00 0.90±0.08

https://doi.org/10.1371/journal.pone.0233028.t002
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quantitatively poorer than those based on extrusion. However, fully automatic models pro-

vided qualitative information about fascicle shape and branching patterns that were lost using

extrusions. The generation of semi-automatic models, ARMS and MRAS, demonstrated the

impact of the registration and segmentation on the final reconstruction.

Fig 6. Models generated from the first proximal block of the first nerve specimen, stained with H&E. Shown are

the fully automatic, semi-automatic, and fully manual models, along with an extrusion using the first slice of the block.

Dimensions on each axis are expressed in pixels.

https://doi.org/10.1371/journal.pone.0233028.g006

Fig 7. Models generated from the third distal block of the first nerve specimen, stained with IHC. Shown are the

fully automatic, semi-automatic, and fully manual models, along with an extrusion using first slice of the block.

Dimensions on each axis are expressed in pixels.

https://doi.org/10.1371/journal.pone.0233028.g007
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4.1. Registration

Registration improved the overall alignment of sequential slices. The improved alignment

was demonstrated by the average decrease and increase in MSE and SSIM, respectively.

However, unexpectedly high standard deviations for both MSE and SSIM indicated that not

all pairs of consecutive images benefitted equally from registration. In some cases, registra-

tion quantitatively decreased the alignment, likely due to the emphasis on aligning the

fascicles and decreased visibility of the connective tissue and nerve boundary caused by

preprocessing. Although the study that introduced this four-step registration method men-

tioned no such difficulties [22], the current study indicates the need to more closely evaluate

the registration outcomes at each step. Next, the registration method tended to align epineu-

rium boundaries, thus potentially straightening out the epineurium of successive slices rela-

tive to actual in vivo geometry. This was not a key concern for the neuroprosthetic context,

since implantation of certain neural interfaces such as nerve cuff electrodes may straighten

Table 3. Mean IOU±SD of the different reconstruction methods for H&E and IHC images, compared to fully

manual reconstructions. The two semi-automatic methods are listed separately as they were not directly compared to

the other three methods, and instead were used to identify contributions of registration and segmentation to the final

IOU scores.

Method Mean IOU Mean IOU

(H&E) (IHC)

n = 6 n = 6

HF 0.426±0.062 0.398±0.149

NF 0.423±0.064 0.399±0.150

EX 0.485±0.110 0.528±0.064

ARMS 0.476±0.108 0.400±0.150

MRAS 0.612±0.066 0.900±0.093

https://doi.org/10.1371/journal.pone.0233028.t003

Fig 8. The effect of hole-fixing. Note that the connected fascicles in the fixed image (left) are separate in the unfixed

image (right). Dimensions on each axis are expressed in pixels.

https://doi.org/10.1371/journal.pone.0233028.g008
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out the nerve regardless. However, more generally, a straightened nerve may not represent

the nerve course in situ. An external reference, generated using MRI or MicroCT/OPT,

could be used to acquire pre-histological external boundary information, to which the algo-

rithm could be modified to conform.

Registration in this study relied on successive linear operations to align slices, rather

than non-linear methods. During early testing, non-linear registrations were found to pro-

vide similar performance as linear methods, but at higher computational cost. Non-linear

registration would also need to be implemented carefully to ensure that any image warping

is not interfering with the anatomical features of the reconstruction. For these reasons,

non-linear registration was left outside the scope of the current investigation, but would

be worth including in future work.

4.2. Fascicle detection

The RCNN successfully detected fascicles in the H&E slices, as demonstrated by the high

F1-score. Investigating neural network architectures other than VGG-16 (e.g., YOLOv3 [28])

may further improve detection performance; however, fascicle detection was likely not the

bottleneck in our current pipeline, as registration and segmentation proved more challenging.

While unsupervised machine learning methods have been used previously for fascicle detec-

tion, our study is the first to use a trained RCNN to detect fascicles in H&E stained images

[29]. Additionally, we specifically and uniquely quantified the performance of fascicle detec-

tion to provide a point of comparison for future implementations.

4.3. Fascicle segmentation

The accuracy of fascicle segmentation depended on the staining method, and thus the amount

of pre- and post-processing involved with the images. Our fully automatic method achieved

accuracies ranging from 53 to 64% for the H&E images. Although our segmentation scores for

H&E images were lower than the 89 to 94% reported for semi-automatic methods [29], our

fully automatic method is more easily scalable for generating models from multiple individu-

als. In contrast, our segmentation of IHC images achieved 90% accuracy using Otsu’s method

with minimal pre and post-processing. The performance on IHC images was comparable to

the 94.5% similarity reported for active contour segmentation of Micro-CT slices, relative to

manually labeled boundaries [16]. Active contour-based segmentation provided good approxi-

mation of fascicle boundaries but could miss small or less visible fascicles.

Pre-processing was necessary to ensure a good quality segmentation. The effect of the pre-

processing depended on structural element size, which was optimized at the outset of the proj-

ect. This element size was chosen to reduce loss of detail while retaining improvement of

image quality, and thus was made as conservative as possible. Therefore, the element size cho-

sen should be applicable in all cases where fascicles are at least as large (in pixels) as the fasci-

cles in our dataset. Given that the median nerve contains a wide range of fascicle sizes, we

anticipate that the element size chosen could be used in most future fascicle modeling scenar-

ios without the need to refine parameters for each investigation. At the magnifications used

here, the current parameter choice would only be detrimental to quality in images with fasci-

cles smaller than 14 pixels in diameter.

Some difficulty was experienced when segmenting densely packed fascicles, which we par-

tially addressed using watershed splitting. A potential alternative to active contours would be

to train a semantic segmentation deep neural network. Semantic segmentation involves using

a CNN in a pixel-wise manner, in our case classifying each pixel as part of the fascicle or the

background. If supplied with sufficient training data, this could eliminate the detection step
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and improve the segmentation performance. Although a more expensive preparation, IHC

stained nerves did not require advanced image processing. Regardless of the staining method

used, the segmentation quality of individual slices markedly affected reconstruction outcomes.

4.4. Reconstruction

Several mechanisms contributed to discontinuous fascicles due to the logic of the reconstruc-

tion method: 1) the registration could not align the fascicle; 2) the fascicle was not detected in

a particular slice(s); 3) the fascicle was not fully segmented (i.e., no overlap with neighbouring

slice); or 4) the fascicle experienced an abrupt change in position. Hole-fixing appeared to help

in some cases, but hindered reconstruction in others. For H&E slices, hole-fixing tended to

introduce a quantitatively minor benefit in terms of IOU. The effect was opposite for IHC

slices, where blocks without hole-fixing showed a minor increase in IOU. This could be due to

the high quality of segmentation for IHC slices. With few missing fascicles requiring compen-

sation, applying additional hole-fixing would likely introduce more errors. Another possibility

is that our algorithm generally performs well without hole-fixing when dealing with large,

well-defined fascicles. Thus, hole-fixing mostly benefits small fascicles and only minor changes

in IOU would occur after its application. Whether or not to use hole-fixing may warrant a

case-by-case examination, especially since reconstruction is one of the least time-intensive

components of the overall pipeline.

Removed slices may also pose a concern in future reconstruction tasks. In our study, all

slices removed due to damage during collection were from the edges of our datasets. This is

consistent with expectations: slices near the nerve ends are more likely to be deformed during

extraction, as this is where the nerve is physically cut. Artifacts were not present and are not

expected within slices requiring interpolation. In the case that a damaged slice were to be pres-

ent in the middle of the dataset, it may be more prudent to leave a blank slice in its place rather

than removing it or attempting reconstruction with the deformed structure. With a blank

slice, the hole-fixing algorithm could partially reconstruct fascicle structure. While it may not

represent the actual fascicle course, especially in the case of splitting or merging that would

occur on that slice, it is likely that a damaged slide would preclude determination of the course

by manual means in any case.

Finally, it is possible that the current pipeline results in certain misrepresentations during

reconstruction. Unusually thin or otherwise misshaped fascicles may have significant deleteri-

ous effects on various simulations using the model. However, as discussed earlier, extrusions

have their own drawbacks; if a fascicle is distorted in the slice chosen for an extrusion, it will

be distorted throughout the entire model, not just for a segment. The use of finer sectioning

may alleviate these reconstruction issues and should be prioritized in future work.

4.5. Impact of registration and segmentation on reconstruction quality

Using our semi-automatic models, we could ensure a good registration or segmentation and

thus better understand how each of these two steps contributed to the IOU scores after recon-

struction. In some cases, IOU demonstrated that simple extrusions were superior to our fully

automatic method, but only in one case was the extrusion superior to MRAS semi-automatic

slices. This suggests the importance of registration in determining the final reconstruction

IOU. Additionally, the possibility exists that the fascicles within the automatic models appear

collectively displaced (within the global reference frame) relative to those of the manual mod-

els. This lack of alignment in the global reference frame may cause low IOU scores, although

the fascicles are correctly aligned relative to one another. Therefore, compared to segmenta-

tion, registration carries larger impact on the final quality of reconstruction.
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4.6. Outlook

Reviewing all blocks where extrusions were superior to the automatic method identified

potential causes for variation in IOU scores. Specifically, we noted the following possible

causes: local misalignment in registration (8 cases); large fascicles missing (i.e., detection issue;

2 cases); small fascicles missing (i.e., segmentation issue; 5 cases); discontinuous fascicles in

manual segmentation (3 cases); and high fascicle density (1 case). For registration, increasing

the contrast of fascicles in pre-processing or increasing the focus on external nerve boundaries,

could create closer-to-manual models. Adding an extra registration at low resolution could

increase the focus on alignment of exterior boundaries. In three cases, fascicles rapidly

changed position and appeared discontinuous in the fully manual nerve slices. Taking one

slice every 100μm would allow for more precise tracking of individual fascicles along the length

of the nerve, reducing the likelihood of discontinuities caused by rapid changes in fascicle posi-

tion. Detection could be improved by acquiring more nerve slices to increase the amount of

training data. Adding a minimum size constraint could improve segmentation, ensuring that

fascicles detected in the mask are not lost after outside-in segmentation.

While it is beyond the scope of this study, subsequent investigations should assess the

impact of increased anatomical accuracy in fascicular models on finite element simulation out-

comes and conclusions. Previous modeling and in vivo literature suggests that this will be an

important issue in scenarios including neural recordings, signal classification, and electrode

design [13,14,30]. There is a clear interest in understanding how various anatomical features

of the nervous system affect experimental outcomes. Future studies can compare the recording

or stimulation outcomes of extrusions and anatomical models to in vivo experiments.

4.7. Contributions to literature

The current work presents a unique fully automatic 3D reconstruction method. We quantified

the performance of each step of our process in order to establish a standard for future explora-

tions of this technology. Furthermore, except for one group that created their own visualiza-

tion software [18], others used commercial reconstruction software to generate their models,

reducing the accessibility to their methods [16,17,19,29]. Every step of our method was imple-

mented in MATLAB, which both simplified the processing pipeline and reduced the barrier to

entry. While further work remains to achieve a completely reliable process, the modular nature

of our method will make it easy to improve individual steps in the pipeline. Moreover, modu-

larity makes it possible to independently implement any step within semi-automatic

workflows.

5. Conclusion

Currently existing peripheral nerve computational models for neural interfaces predominantly

use simplified neural anatomy. Previous research has shown that the conclusions drawn from

computational models can differ depending on the level of anatomical detail in the model;

however, the construction of anatomically accurate models is very time consuming when done

manually. We introduced a framework to automatically generate nerve models based on serial

histological cross-sections. While models could be produced from both H&E and IHC slices,

the easier processing and superior quality resulting from the IHC slices suggests that this ave-

nue should be preferred. While improvements are still required, this study provides a baseline

and stable platform for future development of algorithms to generate accurate computational

models to support the development of neural interfaces.
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Supporting information

S1 Data.

(PDF)

S1 Fig. A sample detection. The width and height of each bounding box were used to generate

an oval with slightly larger dimensions. The connective tissue outside of the circle was seg-

mented out. Note the two false positive blood vessels detected at the top of the image.

(TIF)

S2 Fig. The result after segmenting out connective tissue. Some connective tissue still

remains, as the circle was chosen to be conservative so as to not lose any fascicular tissue.

(TIF)

S3 Fig. The initial mask used for segmentation.

(TIF)

S4 Fig. The final mask after segmentation. The boundaries better conform to the shapes of

the fascicles.

(TIF)

S5 Fig. The final mask is scaled down for reconstruction, to save on file size and processing

time.

(TIF)

S6 Fig. The mask just before reconstruction, after the watershedding, erosion, and a sec-

ond watershedding. Note that some merged fascicles have been split.

(TIF)

S7 Fig. A labelling shows how each fascicle is separated.

(TIF)

S8 Fig. The separate labels persist after the fascicles are dilated back to their original sizes.

(TIF)
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Resources: Anne Agur, José Zariffa.
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