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Reliable propagation of slow-modulations of the firing rate across multiple layers of a

feedforward network (FFN) has proven difficult to capture in spiking neural models.

In this paper, we explore necessary conditions for reliable and stable propagation

of time-varying asynchronous spikes whose instantaneous rate of changes—in fairly

short time windows [20–100] msec—represents information of slow fluctuations of the

stimulus. Specifically, we study the effect of network size, level of background synaptic

noise, and the variability of synaptic delays in an FFN with all-to-all connectivity. We show

that network size and the level of background synaptic noise, together with the strength

of synapses, are substantial factors enabling the propagation of asynchronous spikes in

deep layers of an FFN. In contrast, the variability of synaptic delays has a minor effect on

signal propagation.

Keywords: time-varying rate coding, information propagation, feed-forward neural network, noise, network size,

synaptic delays

INTRODUCTION

Information in the brain is encoded by either the number of spikes in a relatively long time
window, i.e., rate code, or by their precise timing, i.e., temporal code (Abeles et al., 1994; Panzeri
et al., 2001, 2017; Montemurro et al., 2007; Kremkow et al., 2010; London et al., 2010; Zuo et al.,
2015; Runyan et al., 2017; Noble, 2019). The feasibility of utilizing both coding strategies has also
been shown in different neural systems (Kumar et al., 2010; Lankarany et al., 2019). In temporal
coding, information is carried by groups of neurons that fire synchronously, as in synfire chains
(Abeles et al., 1994; Diesmann et al., 1999), whereas in rate coding, neuronal firing ideally remains
asynchronous across neurons (Litvak et al., 2003). Information processing in a hierarchically
organized cortical system relies on the reliable propagation of synchronous and asynchronous
spikes (Joglekar et al., 2018).

The reliable propagation of synchronous spikes (temporal code) is well-understood and
relatively easy to implement in computer models (Kumar et al., 2008, 2010; Joglekar et al., 2018).
In contrast, the reliable propagation of rate-modulated asynchronous spiking (rate code) is poorly
understood and remains challenging to implement in computermodels (Litvak et al., 2003). Indeed,
spikes may synchronize as the signal progresses through deeper layers or may tend toward an
attractor state representing quiescence or a fixed rate. In all of the scenarios, rate-based coding
is compromised.
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Several studies have addressed the conditions required for
spike-rate propagation (Shadlen and Newsome, 1994; van
Rossum et al., 2002; Litvak et al., 2003; Wang et al., 2006;
Kumar et al., 2008, 2010; Joglekar et al., 2018; Barral et al.,
2019; Han et al., 2019). Shadlen and Newsome (Shadlen and
Newsome, 1994) demonstrated the feasibility of rate transmission
using leaky integrate and fire (LIF) models receiving balanced
excitatory and inhibitory inputs. Nevertheless, Litvak et al. (2003)
showed, using the same parameters quoted by Shadlen and
Newsome (1994), that rate was not reliably transmitted when >2
layers were considered. They concluded that rate transmission
in FFNs is highly unlikely. van Rossum et al. (2002) showed
the feasibility of reliable transmission of instantaneous firing
rate (asynchronous spikes) in un-balanced FFNs where the
input to each layer is delivered as an injected current. Kumar
et al. (2008) studied conditions for propagating synchronous
and asynchronous spikes utilizing biologically realistic network
models. The coexistence of firing rate and synchrony propagation
was shown under precise combinations of synaptic strength and
connection probability (Kumar et al., 2010). Cortes and van
Vreeswijk (2015) showed that the pulvinar thalamic nucleus
allows for asynchronous spike propagation through the cortex;
they supply the input-output firing rate relationship between two
cortical areas without manipulating synaptic strengths.

Neuronal networks with feedforward connections consisting
of excitatory neurons are thought of as the model for linking
upstream neurons with downstream neurons, either across
different layers within the same cortical region or between
different cortical regions. Recent studies have capitalized on
the role of recurrent connections in reliable transmission of
synchronous and asynchronous spikes (Joglekar et al., 2018;
Barral et al., 2019). A recent study has demonstrated that
networks with recurrent excitation and lateral inhibition stabilize
signal transmission (Joglekar et al., 2018). As well, a recurrent
network including AMPA and NMDA-mediated components
that operates in an excitatory-inhibitory balanced regime (with
respect to both magnitude and time of excitatory and inhibitory
synaptic inputs) has been recently proposed as a novel model of
information propagation (Barral et al., 2019).

Despite undoubtedly significant impacts of biologically
realistic network architectures in conveying information
across/between layers, neuronal networks with feedforward
connections play a substantial role in understanding the
mechanisms of faithful propagation of different types of spikes
(Kumar et al., 2010). Due to the simplicity of feedforward
networks (FFNs) compared to networks with recurrent
connections, the impact of different factors like intrinsic
properties of neurons in reliable propagation of spikes can be
better studied using FFNs. For example, Han et al. (2019) showed
that layer-to-layer heterogeneity arising from lamina-specific
cellular properties facilitates propagation of synchronous and
asynchronous spikes in FFNs.

In this paper, we focus to systematically explore the
necessary conditions underlying which information of time-
varying asynchronous spikes can be reliably transmitted in deep
layers of an FFN. Using optimal synaptic weights (Faraz et al.,
2020), we study the roles of (i) network size, (ii) the level of

background synaptic noise, and (iii) the variability of synaptic
delays in propagation of slowly time-varying asynchronous
spikes. We show that unlike the variability of synaptic delays
that has a minor effect on signal propagation, network size and
the level of background synaptic noise are substantial factors
enabling the propagation of asynchronous spikes in deep layers
of an FFN.

METHODS

Network size, level of background synaptic noise, and variability
of synaptic delays are the main factors that were investigated in
a feedforward architecture. We created an FFN composed
of excitatory neurons, modeled by leaky integrate and
fire (LIF) model, receiving shared input from the previous
layer plus background synaptic noise. We calculated coding
fraction—representing goodness of propagation of time-varying
asynchronous spikes—for different levels of background synaptic
noise, network size, and variability of synaptic delays.

Optimal vs. Fixed Synaptic Weights
To test the effect of each factor, we estimated synaptic
weights using a reduced network model whose function, in the
propagation of a shared input, is equivalent to an FFNwith all-to-
all connectivity [see (Lankarany, 2019; Faraz et al., 2020) for more
details]. Schematic representations of the reduced network and
an FFNwith all-to-all connectivity were shown in Figures S1A,B.
To better distinguish between the performances of an FFN
with and without optimal synaptic weight, we calculated the
input signal of the second layer of an FFN given the spikes
of the first layer. This input, the reconstructed stimulus, was
shown in Figures S1C,D for optimal and fixed synaptic weights,
respectively. The value of the fixed synaptic weights generated
0.5mV postsynaptic potential (per spike), which is within a
biologically realistic range. As can be seen in these figures, the
stimulus reconstructed by optimal synaptic weights significantly
better tracked the original stimulus (specifically for the optimal
range of network size and noise level). For a reduced network
model with a fixed number of neurons and a constant level of
synaptic noise, the optimal weights were estimated to minimize
the L2-norm error between the reconstructed (in the first layer)
and original stimulus (Faraz et al., 2020). Of note in the reduced
model, is the vector representation of the synaptic weights
(rather than the matrix form) that enables the use of convex
optimization techniques to calculate these weights. Given the
estimated weights in the reduced network model, the mean and
standard deviation (std) of the weights were calculated. To obtain
synaptic weights for an FFN with all-to-all connectivity, we drew
samples from a Gaussian distribution of the mean and std of
the estimated weights. Codes for estimating synaptic weights are
available at https://github.com/nsbspl/async-spike-propagation.

Slow Stimulus
The slow signal was delivered to the neurons in the first layer of
an FFN and modeled by an Ornstein-Uhlenbeck (OU) process of
the time constant of 50 msec. This slow signal can, for example,
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represent the luminance of a natural stimulus (Lankarany et al.,
2019). The OU process can be written as:

dx

dt
= −

x (t) − µ

τ
+ a

√

2

τ
ξ (t) (1)

where ξ is a random number drawn from a Gaussian distribution
with 0 average and unit variance. τ is the time constant, µ

and α indicate the mean and standard deviation of variable x,
respectively. The mean and variance of the slow signal is 16 and
15 pA, respectively.

Level of Background Synaptic Noise (OU
Process)
Background synaptic noise was modeled by an OU process of
the time constant of 5 msec (Destexhe et al., 2001). The mean
of synaptic noise is 0 that balances the effect of background
excitatory and inhibitory synaptic inputs. The standard deviation
of noise varied in a range of (5, 10, 15, 20, 25, 30, 35, 40) pA,
which generated background (no stimulus) spiking activity in a
range of (1.2–10.4) Hz.

Neuron Model
We used leaky integrate and fire (LIF) model. The dynamics of
membrane potential is expressed as follows.

dV

dt
=

− (V − EL) + RIinj

τV
(2)

where EL =−70mV, R= 1 M�, and τV = 10 msec. Iinj indicates
the injected current (slow signal as the stimulus of the first layer).
Spike occurs when V≥Vth, where Vth = −40mV and the reset
voltage is −90mV. For the neurons in the subsequent layers,
Iinj is equal to the total presynaptic input (weighted by synaptic
strengths) plus independent synaptic noise. A double exponential
function of τrise = 0.5msec & τfall = 5msec was used to model an
identical synaptic waveform.

Network Size
Our computational study was performed by varying the number
of neurons in an FFN. Network sizes were varied in a range of
[50, 100, 200, 300, 400, 500, 750, 1000].

Variability in Synaptic Delays
Variability in synaptic delays introduced heterogeneities in
the network. This variability can be interpreted as an un-
equal distance between pre- and post-synaptic neurons (see
Discussion). We modeled such variability by a Gaussian
distribution whose mean represents the synaptic delay (3 msec)
and standard deviation indicates the level of variability across
neurons. The std of synaptic delays varies within an interval of
(0:0.25:1.5) msec, which is in agreement with small variations of
synaptic latencies in the cortex (Boudkkazi et al., 2007).

Instantaneous Firing Rate and Optimal
Kernel Width
The instantaneous firing rate was calculated by convolving
superimposed spikes (of each layer of an FFN) with a Gaussian

kernel. To achieve a consistent comparison between the firing
rates across layers, we used a Gaussian kernel of width = 25
msec. This kernel width was near to optimal for spikes in the
first layer of the FFN (regardless the network size and noise
level). We used a method proposed in Shimazaki and Shinomoto
(2010) to calculate the optimum (Gaussian) kernel width of the
spikes in the first layer. The optimal kernel width was equal to
21.8 msec. We plotted the instantaneous firing rates estimated by
these widths against each other in Figure S2 to demonstrate the
similarities between these estimates.

Coding Fraction and Kullback–Leibler
Divergence
To quantify how much network size and the level of background
synaptic noise effect the propagation of asynchronous spikes in a
network, we used coding fraction (CF) that represents how good
the instantaneous firing rate of the second layer tracks that of the
first layer. CF is calculated as follows.

CF = 1−

∥

∥Firing(Layer 2)− Firing(Layer 1)
∥

∥

2
∥

∥Firing(Layer 1)
∥

∥

2

(3)

where Firing (Layer 1) and Firing (Layer 2) denote the
instantaneous firing rate of the 1st and the 2nd layers,
respectively. And, ||.||2 indicates the norm 2. CF lies within [−1,
1], where 1 represents perfect transmission.

Besides, in order to validate whether CF is equivalent to an
information-theoretic measure, we calculated Kullback–Leibler
(KL) divergence measures between the instantaneous firing rate
of the second and the first layers of the FFN. The Kullback–
Leibler (KL) divergence (Timme and Lapish, 2018) quantifies
the similarity between the probability distributions of the
instantaneous firing rates of the first (Fr1) and the second (Fr2)
layers. The KL divergence is defined as (Perez-Cruz, 2008):

DKL

(

PFr2 (r2) , PFr1 (r1)
)

=
∑

r1∈Fr1 , r2∈Fr2PFr2 (r2) ∗

log

(

PFr2 (r2)

PFr1 (r1)

)

(4)

where PFr1 and PFr2 are the probability distributions of the
firing rates, namely, Fr1 and Fr2, respectively. To calculate
these probability distributions, we utilized a non-parametric
estimation method to approximate them using normal kernel
smoothing (Bowman and Azzalini, 1997). The estimated density

function, f̂h (x), for each layer, can be written as follows.

f̂h (x) =
1

Nh

N
∑

i=1

K(
x− xi

h
) ; −∞ < x < ∞ (5)

where N is the sample size, K(.) is the kernel function, and h is
the bandwidth. DKL is non-negative (≥ 0) and non-symmetric
in P(r2) and P(r1). DKL is equal to zero if P(r2) and P(r1)
match exactly, and can potentially equal infinity if there is no
similarity between the two distributions. In other words, the KL
measure is equal to zero if the firing rates of both layers have the
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same statistical characteristics, implying a perfect information
propagation (across two layers).

We calculated CF and KL divergence for different levels
of background synaptic noise (for N = 400 and N = 500).
Figure S3 shows that these twomeasures are inversely correlated,
i.e., a higher CF is equivalent to a lower KL divergence, which
represents more similarities between the probability distributions
of the firing rates, and thus, a better propagation of the
asynchronous firing rates.

Synchrony Measure
Similar to Lankarany et al. (2019), we used a threshold method
to detect synchronous events. Synchrony threshold, for each
layer of an FFN with specific network size, noise level, and
optimal synaptic weights, was chosen such that the superimposed
spikes during a 10 msec interval generate >20mV post-synaptic
potential. As the optimal synaptic weights depend on the network
size and noise level, the synchrony threshold can be interpreted as
a minimum number of spikes required for post-synaptic neurons
to fire in a short interval.

RESULTS

Network Size and Level of Background
Synaptic Noise Are Substanital Factors
That Enable Reliable Propagation of Slowly
Time-Varying Asynchronous Spikes in
FFNs
To explore the effects of network size and the level of
background synaptic noise in the propagation of slowly time-
varying asynchronous spikes, we vary these parameters in an FFN
consisting of two layers and calculate the coding fraction (CF).
In addition, the number of synchronous events (see Methods)
is quantified to provide more numerical characterizations of the
roles of the above parameters in signal propagation.

A recent study (Barral et al., 2019) has shown that channel
capacity and decoding accuracy decreased after the first layer but
remained above the chance (and almost unchanged). However,
the rationale behind using two layers is that the propagation of
information across layers of an FFN is more likely to maintain
robust if the information is preserved within the first two layers.

Figure 1A shows CF and synchrony measure of spikes as a
function of network size and std of the background synaptic
noise. Three values underlying each parameter are chosen to
classify the range of network size and level of noise into three
categories, namely, small (low), medium (moderate), and large
(high). Note that spikes in the second layer of an FFN (for each
pair of parameters) are produced by optimal synaptic weights (see
Methods and Distribution of Optimal SynapticWeights Depends
on Network Size and Level of Synaptic Noise).

CF increases for medium and large network sizes with
moderate to high levels of background noise. However, CF is
relatively low outside these ranges; it decreases for small network
sizes regardless of the noise level. More precise characterization
of CF against different values of network size and noise level (see
Figure S4) indicates that CF has the highest values for a specific

range of parameters, i.e., network sizes in a range of {400–500}
and std of the noise in a range of {20–30}pA.

The number of synchronous events increases for medium-
and large-size FFNs with low levels of noise (also note that the
signal is not well represented in small-size FFNs with low noise).
Thus, one can predict that more synchronous events would be
generated in the subsequent layers for low levels of background
synaptic noise. Figure 1A (right) also shows that synchronous
events occur in large-size FFNs with moderate level of noise,
suggesting that an improper ratio of network size and noise level
causes synchrony propagation in the subsequent layers.

To visually inspect the effects of network size and noise
std, the instantaneous firing rates of the first and the second
layers are shown in Figure 1B. CF is relatively high for (i) large
network sizes (≥750) with a high level of synaptic noise (σ =

(35–40) pA) and (ii) small network sizes (<300) with a high
level of synaptic noise (σ = 40 pA). In (i), signal propagation
in deeper layers is not stable due to the high level of noise:
the rate code remains asynchronous but tends to the average
firing rate (see Figure S5B). As will be discussed in section
Distribution of Optimal Synaptic Weights Depends on Network
Size and Level of Synaptic Noise, the corresponding synaptic
weights are very weak and biologically unrealistic (N = 750,
σ = 40 pA). The high level of noise in (ii) makes the network
spontaneously active, so it is not possible to discern any signal
from background synaptic activity. As shown in Figure 1B, a
large network size (N = 750) with a small level of background
activity (σ = 10 pA) increases the shared input activity and
amplifies the signal in the second layer. In this case, synchrony
increases across the layers (see also Figure S5C for medium-size
network with low noise). In medium-size FFNs (N = 400), small
(10 pA) and large (40 pA) synaptic noise amplifies and attenuates
signal propagation, respectively.

To better understand the effects of network size and noise level
on the transmission of asynchronous spikes within the first two
layers of an FFN, CF is plotted in Figure 2 for different values of
each factor while the other factor is kept constant. Figure 2 (Left)
shows CF for different network sizes when the noise std, σ =

30 pA. CF is maximized for N = 400 and N = 500, meaning
that information of asynchronous spikes is best transmitted to
the 2nd layer of an FFN for particular network sizes (given a fixed
level of synaptic noise). Similarly, Figure 2 (Right) shows CF as a
function of background synaptic noise for FFNs consisting of 400
and 500 neurons. CF decreases for small and large (CF= 0.56 for
σ = 50 pA, data is not shown in the figure) levels of background
synaptic noise which implies that information is best transmitted
to the 2nd layer of a medium-size FFN (N = 400, 500) given a
moderate level of synaptic noise, i.e., σ = 30 pA.

Simulating an FFN with the optimal network size and level
of synaptic noise enhances the propagation of asynchronous
spikes in deeper layers. To evaluate the performance of an FFN
with the optimal parameters in the propagation of asynchronous
spikes in deeper layers, we show the raster plot and the
instantaneous firing rate of an FFN up to five layers in
Figure 3. Stable propagation of asynchronous spikes can be
seen in this figure for N = 400, σ = 30 pA (as well as in
Figure S5A). The instantaneous firing rates represent signal
propagation across layers (bottom right curves in Figure 3).
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FIGURE 1 | (A) Coding fraction (CF), CF is plotted for different values of network size and the level of background synaptic noise (in a two layers FFN).

(B) Instantaneous firing rate of the 2nd layer (purple) vs. that of the 1st layer (gray) for different pairs of network size and noise level. Note that the delay between layers

is compensated in these curves.

Previously, it was shown that a homogeneous random network
could not transmit a completely asynchronous population
activity due to the existence of the residual correlations (Kumar
et al., 2008). Such correlations are mainly originated from the
shared connectivity and could be reduced by increasing the
network size (Kumar et al., 2008). Unlike homogeneous random
networks, in an FFN with all-to-all connectivity, i.e., a dense
network, a larger network size results in a larger number of
shared pre-synaptic inputs. Although background synaptic noise
induces some heterogeneities in the network, the propagation
of asynchronous spikes in deeper layers is not enhanced for
network sizes > 750. It is to be noted that increasing the

noise level in large network sizes remains spikes propagated
asynchronously; however, at the expense of losing information
of time-varying firing rates (Figure S5B). Moreover, decreasing
the level of background synaptic noise causes synchronous
spikes built up in the subsequent layers of a medium-size
FFN (Figure S5C).

Distribution of Optimal Synaptic Weights
Depends on Network Size and Level of
Synaptic Noise
In addition to synaptic noise that provides heterogeneities in
an FFN [or a locally connected random network (Mehring
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FIGURE 2 | 1-D CF. CF vs. different network sizes when noise std is equal to 30 pA (Left). CF vs. std of synaptic noise (Right) for FFNs with 400 (blue dashed line)

and 500 neurons (purple).

FIGURE 3 | Reliable propagation of slowly-time varying asynchronous spikes in 5 layers [raster plot & instantaneous firing rate (Gaussian kernel of width 25 msec)] of

FFNs with optimal values of network size (500), level of synaptic noise (30 pA), and synaptic strength. Note: the delay between layers is compensated in these curves.

et al., 2003)], previous studies considered that a distribution of
passive properties of neurons that rises to a distribution of the
synaptic weights (Kumar et al., 2008) induces heterogeneities
across neurons. In this study, synaptic weights are estimated from
the firing activities of the first layer, and the underlying mean and
standard deviation (with an assumption of Gaussian distribution)
are used to draw weights for subsequent layers. Thus, the mean
of the estimated weights reflects the strength of the synapses, and
the std of the weights indicates heterogeneities across synapses.

To test whether the estimated weights are biologically realistic,
we validate if the corresponding postsynaptic potential (PSP) lies
within a biologically-reasonable range. We show in Figure 4, a
heatmap of PSPs—corresponding to the mean of the estimated
weights—as a function of network size and level of background

synaptic noise. Synaptic weights generating extremely weak (<
0.05mV) or extremely strong (>1.5mV) PSPs per presynaptic
spike are considered as unrealistic weights. As can be seen in this
figure, the synaptic weights for large network sizes (N > 750)
and moderate to high background noise are weak, generating
postsynaptic potentials less than 0.1mV (per single presynaptic
spikes). In contrast to the large network sizes with weak synapses,
the estimated synaptic weights of FFNs with small network sizes
generate larger postsynaptic potentials, specifically for the lower
levels of synaptic noise. Therefore, one can conclude that only a
specific range of synaptic weights is biologically realistic.

Improper selection of synaptic weights for an FFN results
in unstable propagation of asynchronous spikes. Systematically
varying synaptic strengths from moderately weak to moderately
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FIGURE 4 | Heat map of postsynaptic potentials (corresponding to synaptic weights) for different network sizes and levels of synaptic noise.

FIGURE 5 | Improper synaptic weights result in either attenuation or amplification of the slow signal in the subsequent layers. Instantaneous firing rates of an FFN with

N = 500 and noise std = 30pA for (A) proper synaptic weights, (B) strong synapses (corresponding to N = 400 and noise std = 30pA), and (C) weak synapses

(corresponding to N = 600 and noise std = 30pA).

strong synapses, we find a transition between attenuation
mode, where transmission of time-varying rates failed, to an
amplification mode where the average firing rate increased
at the subsequent layers (Figure 5). We repeat running
an FFN of size 500 with the level of noise of 30 pA
with synaptic weights (mean and std) obtained from an
FFN with the same level of synaptic noise but different
network sizes, i.e., relatively stronger synapses (0.1 pA/mV
corresponding to N = 400) and weaker synapses (< 0.05 pA/mV
corresponding to N = 600). Figure 5 demonstrates that the
propagation of a slow signal is either amplified (Figure 5B)
or attenuated (Figure 5C) when the weights are stronger or
weaker, respectively.

It is to be noted that the time constants of excitatory
synapses and neurons’ membrane potential influence the
estimated synaptic weights. Chan et al. (2016) showed that

different combinations of these time constants alter the pair-
wise correlation and synchrony of spikes, e.g., burst firing
occurs when the time constant the neuron’s membrane
is small and that for excitatory synapses is large. These
time constants are fixed in our estimation method (see
Methods), and no burst firing was observed in medium-size
FFNs (N = 400, 500) with a moderate level of synaptic
noise (20, 25, and 30 pA).

Variability of Synaptic Delays Has a Slight
Influence on the Propagation of
Asynchronous Spikes
In biologically-realistic scenarios, presynaptic inputs are
delivered from neurons with different distances to the target
(postsynaptic) neuron. In the context of signal propagation,
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FIGURE 6 | CF vs. std of synaptic delays in a two-layer FFN with N = 500 and noise std = 30pA.

for example, Joglekar et al. (2018) have introduced inter-areal
delays by considering the corresponding inter-areal wiring
distances (Markov et al., 2014) and assuming a constant axonal
conduction velocity. To explore how different distances between
the pre- and post-synaptic neurons affect signal propagation,
we introduce variability in the synaptic delays. Synaptic delays
are drawn from a Gaussian distribution of a fixed mean (3
msec) and variable std. We calculate CF for different values
of the std of synaptic delays in a two-layer FFN (N = 500 and
σ = 30 pA). Figure 6 shows that CF is nearly independent
of the variability of synaptic delays. In addition, we show the
propagation of asynchronous spikes in an FFN with two levels of
variabilities of synaptic delays in Figure S6. Similar to Figure 3,
the FFN comprises 500 neurons, each receiving 30 pA synaptic
noise. As expected, the variability of synaptic delays does not
change signal propagation significantly compared to that with
no variability.

What Range of Firing Rates Can Be
Reliably Tranmistted Across Multiple
Layers?
We construct logistic maps of the firing rates in the first and the
5th layers of an FFN (N = 500 and σ = 30 pA) to determine the
range of frequencies that can be reliably transmitted. Figure 7
shows that the information of asynchronous spikes is preserved
across layers for frequencies in the range of [5–25] Hz. The
curve in this figure is obtained by superimposing the average
instantaneous firing rate of 5 networks, each of which receiving
different slow stimuli (with the same time constants). For
frequencies > 10Hz, although the logistic curve becomes slightly
sublinear, the firing rate of the 5th layer still tracks that of the
first layer, indicating that the firing rate is uniquely represented
in deep layers of the FFNs. However, for frequencies > 25Hz, the
logistic curve is supralinear that capitalizes on the tendency of the
transmitted firing rates to the synchrony mode.

FIGURE 7 | Logistic map showing output rate (firing rate in layer 5) vs. input

rate (firing rate in layer 1). The red dashed line has a slope of 1.

DISCUSSION

Necessary conditions for reliable propagation of time-varying
asynchronous spikes in FFNs were investigated in this
paper. Previous studies have addressed those conditions
for transmission of synchronous spikes as well as the
mean of firing rate of asynchronous spikes. However, these
conditions barely remain valid for transmission of time-varying
asynchronous spikes whose instantaneous rate of changes
represents information of slow fluctuations of the stimulus. In
this paper, we investigated the necessary conditions for reliable
transmission of asynchronous spikes in an FFN. Specifically, we
explored the effect of network size, level of background synaptic
noise, and the variability of synaptic delays in an FFN with all-to-
all connectivity. We demonstrated that network size and the level
of background synaptic noise, together with optimal synaptic
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weights, were substantial factors that cooperatively enable the
propagation of asynchronous spikes in deep layers of an FFN.
Nevertheless, the variability of synaptic delays had a minor effect
on signal propagation. Varying these factors systematically, we
found that an FFN of network size of {400–500} with the level
of synaptic noise in a range of {20–30} pA and proper synaptic
weights transmits time-varying asynchronous spikes reliably.

Reliable propagation of a rate code is challenging: even weak
pairwise correlations in the spike timing can notably deteriorate
the fidelity of the rate code (Kumar et al., 2010). Thus, the robust
transmission of asynchronous spikes cannot be simply achieved
from a general theory based on the balance of (common) signal
and (background) noise. We showed that the same level of
(moderate) noise provides very different signal propagations in
networks with different numbers of neurons; it degrades the
firing rate of an FFN of size = 100 whereas it can maintain a
reliable signal propagation for a network size of 400 (the synaptic
weights are optimized in both networks). One can interpret that
the network size and noise level are competing to maintain a
constant signal to noise ratio. Nevertheless, this interpretation
is not necessarily correct in the context of signal propagation
through an FFN with all-to-all connectivity. For example, the
performance of signal representation in the second layer of an
FFN with N = 400 & σ = 25 pA is almost equivalent with that
of N = 750 & σ = 40 pA (see Figure 1B). However, despite
the similarity within the two layers, the firing rate of the latter
degrades in the subsequent layers. Therefore, a specific range
of parameters—network size, synaptic strength, and level of
synaptic noise in an FFN—should be identified to cooperatively
maintain a consistent representation of the common (slow) signal
across multiple layers.

Signal Propoagation in Neural Networks
With Recurrent Connections
Despite the focus of this paper on the use of networks with feed-
forward connections, recent studies demonstrated the feasibility
of reliable signal propagation in recurrent networks (Joglekar
et al., 2018; Barral et al., 2019). Of note in these studies is
that lateral or feedback connectivity are biologically plausible
architectures to transmit information between cortical layers
(Stroud and Vogels, 2018). Joglekar et al. (2018) showed that
reliable signal propagation could be achieved in large-scale
recurrent network models of the macaque cortex. It is worth
mentioning that the activity dynamics of recurrent networks
can be compatible with those of FFNs (Kumar et al., 2010).
Kumar et al. (2010) used FFNs as a part of a recurrent network
to study reliable signal propagation in a biologically plausible
scenario. In the context of visual perception, a recent study
showed that a recurrent neural network with a few layers can
be unfolded as very deep FFNs (Liao and Poggio, 2016; Rajaei
et al., 2019). In addition, other studies illustrated that recurrent
random networks may behave similar to an FFN (Ganguli et al.,
2008; Goldman, 2009; Murphy and Miller, 2009; Kumar et al.,
2010).

Thus, studying conditions of reliable signal propagation in an
FFN helps better understanding the underlying mechanisms of

information propagation in more biologically realistic scenarios
in which the dynamics of an FFN interact with that of the
embedding recurrent network.

Impact of Heterogeneous Synaptic Delays
on Signal Transmission in Recurrent Neural
Network
We showed that the impact of heterogeneous synaptic delays
on the propagation of asynchronous spikes in an FFN was not
significant. However, the heterogeneity in synaptic delays can
alter the dynamics of a recurrent neural network and have a
substantial effect on signal transmission. Here, we discuss three
scenarios that capitalize on the substantial but ambiguous impact
of the variability of synaptic delays in signal propagation. First,
the heterogeneity in synaptic delays might have contrasting
effects if applied to excitatory and inhibitory neurons. In
a strongly recurrent network with excitatory synapses, this
heterogeneity can reduce the likelihood of synchronization.
In contrast, it can alter the tight balance of excitatory and
inhibitory inputs—necessary for a reliable signal propagation—
in a recurrent network with lateral inhibition (Joglekar et al.,
2018; Stroud and Vogels, 2018). Second, the variability of
synaptic delays might be compromised by that caused by synaptic
transmissions. A recent study demonstrated that a network with
non-instantaneous synaptic transmission and fixed spike delivery
delay is equivalent to a network with a proper distribution of
spike delays and instantaneous synaptic transmission (Mattia
et al., 2019). Thus, a network with various types of synapses is
differently influenced by the heterogeneity of synaptic delays. For
example, the impact of the variability of synaptic delays (e.g.,
std ∼ 1 msec) can be more significant in a recurrent network
with AMPA receptors (with a short time constant) compared to
that with NMDA receptors (with a large time constant). Third,
the variability of synaptic delays can be regulated by short- and
long-term forms of synaptic plasticity. It was experimentally
demonstrated that the synaptic latency at monosynaptically
connected pairs of L5 and CA3 pyramidal neurons is inversely
correlated with the amplitude of the postsynaptic current and
sensitive to manipulations of the presynaptic release probability
(Boudkkazi et al., 2007). Therefore, incorporating models of
synaptic plasticity in the simulation of neural networks can
induce another source of heterogeneity in synaptic delays, which
in turn, alters signal propagation.

Optimal Level of Synaptic Noise and
Stochastic Resonance
Stochastic resonance in the neural systems was first observed
in the response of the neuronal network to a weak periodic
signal (Gluckman et al., 1996) [see (Bulsara et al., 1991;
Longtin, 1993) for stochastic resonance in neuron models].
In stochastic resonance, a proper amount of noise can boost
signal representation. Noise in our model recreated the effect
of the background synaptic noise that exists in vivo (Destexhe
et al., 2001). Previous studies, e.g., (van Rossum et al., 2002;
Kumar et al., 2010), demonstrated that background synaptic
noise may balance the synchronizing effect of shared connectivity
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in an FFN, thereby enabling the propagation of asynchronous
firing rates. Unlike other studies that the average firing rate of
asynchronous spikes is the sole information that must remain
unchanged across layers, we used a time-varying slow signal
as an input to an FFN to explore to what extent information
of slow fluctuations can be transmitted across layers. In this
study, although the input was not fully periodic, we found
that a certain range of noise (see Results) enables maximum
information transfer across layers. Interestingly, this range of
noise (std of membrane fluctuations (no stimulus) ≈ 4mV
for std of noise = 25 pA) is in agreement with the level of
background synaptic noise observed in-vivo high-conductance
state (Destexhe et al., 2003). Thus, from a system level perspective
and in the context of consistent information transfer, one can
conclude that stochastic resonance might occur in an FFN with
the optimal level of background synaptic noise (see also the effect
of network topologies on stochastic resonance in FFNs Zhao
et al., 2018).

Optimal Network Size and System-Size
Coherent Resonance
Similar to noise-induced resonance, an optimal number of
elements in a biological system can maximize the regularity in
the emitted signal (in the presence of optimal level of noise),
i.e., system-size coherence resonance (Toral et al., 2003). Toral
et al. (2003) demonstrated that there is a coherence resonance
effect, in the sense of maximum regularity in the signal generated
by an ensemble of globally coupled Fitzhugh-Nagumo models,
as a function of the number of coupled neurons, namely, N, in
the presence of noise. It was shown that, for a specific set of
parameters, the maximum regularity occurs for N ≈160 (Toral
et al., 2003). A coherence resonance with respect to the number of
neurons may exist in an FFN. Both the stochastic resonance and
coherence resonance (CR) were investigated in the triple-neuron
feed-forward-loop network motifs (Guo and Li, 2009). It was
demonstrated that noise could enrich the stochastic dynamics
of those motifs. In this study, we showed that for specific
distribution of synaptic strength and optimal level of background
synaptic noise, a reliable propagation of the time-varying rate

of asynchronous spikes occurs for medium size FFNs (in the
rang of {400–500}). Despite differences in the types of inputs,
the architecture of an FFN vs. excitatory/inhibitory coupled
neurons, propagation vs. representation, and other factors that
resulted in two different values underlying optimum network
size [compared to Toral et al. (2003)], our study capitalized
on the significance of system-size coherence resonance in
neuronal dynamics.
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