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ABSTRACT

Background: Inspiratory flow limitation is a breathing pattern during sleep caused by upper airway (UA)
narrowing that occurs during snoring and various degrees of obstructive sleep apnea (OSA). Clinical ex-
amination of flow limitation relies on identifying patterns of airflow contour, however this process is
subjective and lacks physiological evidence of UA narrowing. Our objective is to derive the temporal features
of nasal airflow contour that characterize flow limitation. The features that correlate with UA narrowing can
be used to develop machine learning classifiers to detect flow limitation with physiological support.
Methods: Sixteen healthy adult men underwent full daytime polysomnography where the nasal airflow
was recorded. Before and after sleep, we measured UA anatomical parameters including neck circum-
ference (NC) and upper-airway cross-sectional area (UA-XSA). We extracted various temporal features of
airflow and investigated their relationships with the UA anatomical parameters.
Results: We found that three features were correlated with the anatomical parameters associated with
UA narrowing: deviation index vs. baseline UA-XSA (r = —0.67, p = 0.01), peak amplitude variability vs.
baseline UA-XSA (r = —0.69, p < 0.01), peak amplitude variability vs. ANC (r = 0.74, p < 0.01) and peak
number vs. baseline UA-XSA (r = —0.54, p = 0.04).
Conclusions: Temporal features of airflow were associated with UA narrowing. Future studies could
utilize the features to develop classifiers to detect flow limitation and assess the severity of breathing
disorders during sleep in high-risk populations such as pregnant women and children.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

pressure. In contrast, flow limitation occurs when more negative
intrathoracic pressure does not cause a corresponding increase in

Inspiratory flow limitation (referred to as flow limitation in the
text) during sleep is a common phenomenon that arises from upper
airway (UA) narrowing. It occurs in various breathing disorders
during sleep, ranging from snoring to varying degrees of obstruc-
tive sleep apnea (OSA). Normally with a patent UA, inspiratory
airflow through the UA is proportional to the negative intrathoracic
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airflow [1]. Flow limitation is associated with reduced airflow,
carbon dioxide (CO;) retention, hypoxia, and elevated respiratory
effort that can trigger arousals which, in turn, cause resolution of
flow limitation by activating the upper airway dilator muscles [2,3].
The detrimental health effects related to flow limitation include
disturbed sleep structure and daytime sleepiness [3]. Moreover, a
recent study on the pathophysiology of flow limitation during sleep
indicated that flow limitation is related to palatal anatomical ab-
normalities such as a thick palate and a voluminous lateral
pharyngeal wall [4]. Although the presence of flow limitation in
breathing disorders during sleep is widely acknowledged, the
American Academy of Sleep Medicine currently recognizes flow
limitation only as a manifestation of OSA; and no standard criteria
have been established to evaluate its presence and severity [5,6].
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Conventionally, detection of flow limitation requires recordings
of airflow and respiratory drive measured by pneumotachography
and esophageal manometry, respectively [7]. However, these
measurements are cumbersome and invasive. Alternatively, flow
limitation can be inferred from airflow tracings that exhibit flat-
tening or scooping patterns [8,9]. The airflow can be conveniently
recorded by a noninvasive nasal cannula/pressure transducer sys-
tem. In addition, the American Thoracic Society proposed methods
to standardize the scoring of flow limitation from nasal airflow
recordings, leading to a future focus of developing automated
scoring algorithms [5]. Norman et al., designed a classifier using
artificial neural network that was trained by manual annotation
exacted from experts who visually examined the airflow contours
[10]. Their proposed method achieved a classification agreement of
82.4% against the manual annotation, but the inter-annotator
agreement for flow limited breaths was 80.3%. It was possible
that the annotator-dependent bias reduced the classification ac-
curacy. To preclude this bias, another study automatically clustered
airflow contours into seven classes and interpreted the UA flow
anatomic abnormality for each class [11]. While this study is
exempt from the subjectivity of manual annotation, the author only
posited the link between different clusters and the UA narrowing
without actually assessing UA narrowing. Therefore, it is important
to design studies to validate noninvasive detection of flow limita-
tion based on assessment of the UA narrowing.

Direct measurements of UA narrowing such as MRI or UA
endoscopy are expensive, cumbersome, and may alter sleep
structures. To address this limitation, the present study aims to
identify temporal features of airflow that characterize flow lim-
itation and its association with UA narrowing. Previous studies
from our group have shown that rostral fluid shift during sleep
contributes to the UA narrowing. When moving from upright to
recumbent position at bedtime, fluid that has accumulated in the
legs during the day due to gravity moves out of the legs, and a
part of this fluid accumulates in the neck by gravity, which in-
creases neck circumference (NC) [12—14] and tissue pressure
around the UA, which narrows the UA [15]. We assessed the
severity of UA narrowing by measurements of NC and UA cross-
sectional area (UA-XSA) before and after sleep. To characterize
flow limitation, we calculated several temporal features of the
airflow contour and investigated the relationship between these
features and the UA parameters. To further validate these fea-
tures, we used a clustering technique to separate breaths into
flow limited and normal breaths and identified differences in the
features between the clusters.

2. Method
2.1. Data collection

This is a retrospective study and data were extracted from a
previous protocol, which was a double crossover study that
investigated the effects of intravenous fluid infusion of approxi-
mately 2 L during sleep on sleep apnea severity [ 16]. For this study,
we used data from the control arm of the previous protocol in
which an intravenous line was inserted but saline was infused at
the minimum rate required to keep the vein open, so that a negli-
gible amount of fluid was infused (less than 100 ml).

Participants arrived in the sleep laboratory at noon for a daytime
sleep study following a night of sleep deprivation of less than 4 h to
facilitate the induction of sleep during the day. Participants
refrained from consuming caffeinated beverages and alcohol at
least 12 h prior to the experiments. Participants were instrumented
for polysomnography. Before and after sleep, NC and UA-XSA were
measured while lying in supine position.

2.2. Participants

Participants were recruited by advertisement. The inclusion
criteria were as follows: nonobese men, with a body mass index
less than 30 kg/m? and blood pressure less than 140/90 mmHg. The
exclusion criteria were a history of sleep apnea, cardiovascular,
kidney, neurological or respiratory diseases, use of prescribed
medication, and use of over-the-counter medication that might
affect fluid retention.

2.3. Polysomnography

Polysomnography (PSG) was performed during the day to
accommodate scheduling of the nurse required to insert the IV line
into the study participant. Sleep stages and arousals were scored
according to standard techniques and criteria [17]. Nasal airflow
was recorded by the BiNAPS® nasal airflow/pressure transducer
system (Salter Labs, USA). Arterial oxyhemoglobin saturation
(Sa0;) was captured by pulse oximetry [1]. Apneas were defined as
more than 90% reduction in nasal airflow or thoraco-abdominal
motion from baseline, lasting more than 10 s. Hypopneas were
defined as more than 30% reduction in airflow lasting more than
10 s, associated with a minimum 3% desaturation or an arousal from
sleep [17]. Severity of sleep apnea was assessed by apnea-hypopnea
index (number of apneas and hypopneas per hour of sleep or AHI).
Participants slept supine for the study period to eliminate the effect
of different sleep postures.

2.4. Neck circumference and upper-airway cross-sectional area

Before and after sleep with participant supine, NC and UA-XSA
were measured. NC was measured by a tape measure just above
the cricothyroid cartilage [16]. A mark was drawn at the same level
to ensure consistency of the repeated measurement after sleep. UA-
XSA was assessed by acoustic pharyngometry [18].

2.5. Ethics statement

The Research Ethics Board of Toronto Rehabilitation Institute
approved this protocol. All participants provided written consent
prior to participation.

2.6. Signal processing

Signal processing included four main stages: (1) preprocessing
the recorded nasal airflow, (2) extracting physiology-driven fea-
tures, (3) using the extracted features to classify every breath into
normal or flow limited breaths, and (4) validation of the classifi-
cation results. These methods are outlined in Fig. 1.

2.6.1. Preprocessing

The nasal airflow was sampled at 85.33 Hz. The frequency of the
recorded airflow ranged from 0.01 Hz to 3.2 Hz. The data were first
preprocessed, which includes denoising and respiratory onset
detection. UA collapsibility and the control mechanisms of UA
dilator muscles are highly dependent on the sleep stage [19]. To
account for this state-dependence and because all participants
spent most of the time in non-rapid eye movement stage 2 (N2)
sleep [20], only nasal airflow data captured during N2 sleep were
included.

To denoise the signal, three different methods were compared
and the most optimal method was selected. These methods include
filtering with a Gaussian function, a low-pass Butterworth filter,
and a wavelet denoising filter with symlet-4 function. The filter
parameters were chosen in order to remove the noise and smooth



72 Y.X. Zhi et al. / Sleep Medicine 48 (2018) 70—78

Pre-processing of Nasal Airflow
* De-noising
* Onset detection

!

Feature Extraction

I Kmeans Clustering I

Visual Verification:
Average plots of

* Flow limited contours
¢ Normal contours

Correlational Analysis:

* Independentvariables:
NC, UA-XSA

* Dependent variables:
Feature values, flow-limited %

Fig. 1. Schematic illustration of the signal processing method. The nasal airflow was
first preprocessed with denoising and onset detection algorithms. The nasal airflow of
each inspiratory period was partitioned into inspiratory contours, based on which
features were extracted. The feature results were used as the inputs for k-means
clustering. Two clusters — flow limited and normal — were generated. The contours of
those two clusters were averaged for visual verification. In addition, the correlations
were calculated between the independent variables: neck circumference (NC) and
upper-airway cross-sectional area (UA-XSA) and the dependent variables: feature
values and percentage of breaths considered to be flow limited (flow-limited %).

the signal, while preserving the main features of the original signal
such as its histogram. The performance of various filters was
compared using simulated noisy airflow (for details, please refer to
the Supplementary Materials).

An important step for feature extraction and classification is the
accurate detection of inspiratory and expiratory onsets. Onset
detection can be challenging because the baseline of the nasal
airflow signal can shift due to head movement, technical difficulties
with sensor design, and air leakage from the sensor. We developed
an algorithm based on analyzing variations in the slope of nasal
airflow to automatically account for the changes in nasal airflow
baseline over time (for details, please refer to the Supplementary
Materials). Furthermore, we implemented three methods based
on the previous literature: median of the signal [21], prespecified
constant baseline of the nasal airflow [22], and maximum rate of
change [1].

The denoising and onset detection methods together influence
onset detection results. Therefore, different denoising methods
were combined with different onset detection algorithms to
automatically locate onsets. The results were compared with the
onsets identified manually on the unfiltered data and inspiratory
onset errors were calculated. The combination of denoising and
onset detection algorithm with the smallest error would be rec-
ommended for preprocessing (for details, please refer to the
Supplementary Materials).

2.6.2. Feature extraction

Five features were extracted to describe the temporal patterns of
the inspiratory airflow. The selection of features was inspired by the
relevant literature as well as visual observation.

1. Deviation index [10] which describes how much the nasal
airflow deviates from an ideal contour during normal inspira-
tion. Deviation index is estimated as the difference between the
area under an airflow contour (Aajrfiow) measured during inspi-
ration and the area under a normal airflow contour which was

simulated as a sinusoidal waveform (Asinusoid) With similar peak
amplitude and duration to the nasal airflow (Fig. 2a). Only the
middle 50% of airflow contour was used for calculating deviation
index as it was shown that the middle portion of the airflow
contour is most indicative of flow limitation [1]:

Agi — Asinusoid
Deviation Index — | "ow — sinusol o
Aairﬂow

2. Peak amplitude variability, which represents variations in the
amplitude of airflow. Presence of apneas, hypopneas, and the
following hyperventilation periods increase variability of
airflow amplitude in sleep-disordered breathing compared to
normal breathing. Peak amplitude variability is calculated as the
peak amplitude of nasal airflow (Fpeak) normalized by the
average (arithmetic mean) peak amplitude of the nasal airflow
over all breaths (Avgpeak, Fig. 2b).

F peak (2 )

Peak Amplitude Variability = Aoz
peak

3. Scooping index [23] was shown to indicate transient increases
in the UA collapsibility during inspiration. It is calculated as the
difference between the first trough (Fiough) and peak of the
nasal airflow (Fpear) divided by the peak of nasal airflow (Fig. 2c)
[23—-25].

Fooa — F,
Scooping Index — -Peek — “trough 3)

peak

4. Peak number in every inspiratory contour (Fig. 2d). Having more
than one peak during inspiration indicates snoring which is
associated with the UA narrowing.

5. Kurtosis of the inspiratory contour, equivalent to the “peaked-
ness” of the signal (Fig. 2e). For example, Kurtosis of a normal
airflow with a bell shape is three, while Kurtosis of a flattened
airflow is less than three. Therefore, a flattened contour during
flow limitation will yield a smaller kurtosis compared to a
rounded contour associated with normal breathing:

Kurtosis =

E(x—wu 4
(74) (4)
where p is the mean and o is standard deviation of the airflow
contour.

2.6.3. Unsupervised clustering

In this study, we did not use esophageal manometry to detect
flow limited breaths. Therefore, we implemented an unsupervised
classification algorithm based on k-means clustering (k = 2) to
classify every breath as either normal or flow limited. K-means
clustering is an iterative process which starts with k initial random
“means” (also known as cluster centroids). In every iteration, the
algorithm updates the clusters by assigning the features of each
inspiratory contour to the closest cluster centroid based on the
Euclidean distance. Then, the cluster centroids were updated as the
average of the classified features within each cluster. This process
was repeated until the total sum of distance from centroids did not
change.

The adequacy of the k-means classifier in separating the data
into distinct groups was described using measures of separability.
We report separability as statistical differences between the
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Fig. 2. Graphical representation of the following features: (a) Deviation Index, (b) Peak Amplitude Variability, (c) Scooping Index, (d) Peak Number, and (e) Kurtosis.

clusters for each feature and participant. Statistical differences
were computed using the unpaired t-test. In addition, we utilized
the Silhouette method to validate the consistency of clusters within
the data across all features [26]. This method outputs a single value
that is an aggregate measure of similarity between each data point
and the cluster to which it is assigned, compared to the neighboring
cluster. The silhouette ranges from —1 to 1, where a value closer to
1 indicates that the samples are well matched to their own clusters
and poorly matched to neighboring clusters.

K-means clustering is sensitive to the absolute magnitude the
data which can vary across features with incomparable units. To
correct for this, input features were converted to z-scores, such
that each feature had a mean of 0 and standard deviation of 1.
K-means clustering is also sensitive to the initial selection of cluster
centroids and may terminate at local minima. To overcome this
issue, the clustering algorithm was repeated 100 times with
different initial centroids. The histogram of centroids from 100
repetitions was generated and two centroids with maximum fre-
quency of repetition were selected as the cluster centroids for
normal and flow limited classes. Finally, based on these centroids,
Euclidean distance of each inspiratory contour to the cluster
centroid was used to classify the inspiratory contours into normal
or flow limited classes.

To validate classification results, for every participant, the
average and standard deviation of all inspiratory contours within
normal or flow limited clusters were calculated. These average
contours were visually compared with those from the previous
literature. The percentage of flow limited breaths (flow-limitation
%) was defined as the number of inspiratory contours clustered as
flow limited divided by the total number of inspiratory contours.

2.7. Statistical analysis

We investigated the correlation between the extracted features
and the UA anatomical variables including baseline NC, UA-XSA,
and ANC, AUA-XSA after sleep. Similarly, we investigated the cor-
relations between flow-limitation % and the baseline NC, UA-XSA,
and ANC, AUA-XSA after sleep.

Normality of the data was first tested with the Anderson—
Darling test. Pearson correlations were applied for normally
distributed data and Spearman's rank correlations for non-normally
distributed data. A correlation is considered significant with a two-
tailed p-value <0.05. All data are reported as mean + SD.

All the signal processing and statistical analyses were conducted
with Matlab® R2014a.

3. Results

Sixteen nonobese men, aged 39.9 + 14.0 years and with an AHI
of 21.7 + 25.2 events/hour completed the protocol with total sleep
time of 136 + 50 min. Because of technical difficulties, one and two
out of the 16 participants did not have measurements of NC and
UA-XSA, respectively. Participant demographics are shown in
Table 1. On an average, 1080 + 448 inspiratory airflow contours
were investigated from each participant during N2 sleep.

Among all the combinations of preprocessing filters and onset
detection algorithms, the onset detection algorithm based on our
proposed method combined with Gaussian low-pass filter achieved
the smallest errors compared to the manually determined onsets
(details are presented in the supplementary information, Table S2).

The peak amplitude variability was strongly and positively
correlated with ANC (Fig. 3a). There was also a strong negative
correlation between the peak amplitude variability and baseline
UA-XSA (Fig. 3b). The significant correlations were preserved even
after removing the potential outlier whose peak amplitude

Table 1

Participant demographics.
Number of participants 16
Age, years 40 + 14
Height, cm 175.0 £ 5.9
Weight, kg 83.2 + 10.5
Body mass index, kg/m? 274 +£29
Neck circumference, cm 428 +2.5
Upper airway cross-sectional area, cm? 26 +0.6
Heart rate, bpm 70 +9
Apnea-hypopnea index, events/hour sleep 21.7 £ 252
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Fig. 3. (a) Peak amplitude variability is positively and strongly correlated with ANC (NC: neck circumference), and (b) negatively and strongly correlated with baseline UA-XSA
(upper airway cross-sectional area); (c) deviation index is negatively and significantly correlated with baseline UA-XSA; and (d) peak number is negatively and significantly

correlated with baseline UA-XSA.

variability was close to 2. Deviation index was significantly and
negatively correlated with baseline UA-XSA (Fig. 3c). The peak
number was significantly and negatively correlated with baseline
UA-XSA (Fig. 3d). Lastly, scooping index was negatively correlated
with ANC (Table 2). There was no correlation between kurtosis and
any of the independent variables (Table 2).

Fig. 4 shows the mean and standard deviation contours of
apparent flow limited and normal clusters for every individual. The
solid curves indicate the mean contour and the dashed curves
indicate mean + SD curves. It can be seen that for most of the
participants, the apparent flow limited contours contain obvious
flattening and apparent normal flow contours contain rounded bell
shape, with the exception of participant 10 whose flow limited
contour contains rounded bell shape with only slight steady slope.

Table 3 shows the results of the t-test describing separability of
the clusters for each feature and participant. In addition, the
silhouette coefficient describes overall separability, which accounts
for all features in a single metric for each participant. Nearly all the
individual features were significantly different between the clus-
ters across participants. Only peak amplitude variability was not
significantly different between the clusters for participants 1, 3, 13,
and 16. Furthermore, deviation index, scooping index, peak
number, and kurtosis were all higher in the flow limited cluster,
compared to the normal cluster across all participants. Peak

amplitude variability was generally lower in the flow limited
cluster across most participants. Overall separability measured by
the silhouette analysis was greater than O for all participants and
greater than or equal to 0.4 in 13 of 16 participants.

Fig. 5 shows the correlations between flow-limitation % and
baseline UA-XSA. Participants with narrower UA before sleep had a
significantly greater percentage of flow limited breaths. There was
no significant correlation between flow-limitation % and other
measured variables.

4. Discussion

This study has led to several important and novel findings with
implications for sleep physiology. First, we have shown that tem-
poral features of the nasal airflow contours, such as peak amplitude
variability, deviation index, and peak number were strongly
correlated with the neck and UA anatomical measurements such as
NC and UA-XSA. Second, clustering based on these features resulted
in two clusters corresponding to normal, round contours, and flow
limited contours containing flattened regions. Third, we found that
the percentage of breaths inferred as flow limited was strongly
correlated with UA-XSA before sleep, an index of UA narrowing
[27]. To our knowledge, this is the first study that investigated the
relationship between features of the airflow contours and UA

Table 2
Correlations, r (p), between proposed features and airway anatomic variables. NC: neck circumference; UA-XSA: upper airway cross-sectional area.
Deviation index Peak amplitude variability Peak number Scooping index Kurtosis IFL (%)
NC 0.06 (0.84) 0.17 (0.57) -0.1(0.72) —0.07 (0.81) 0.11 (0.69) 0.39(0.15)
ANC 0.37 (0.17) 0.74 (<0.01) 0.2 (0.36) —0.57 (0.03) —0.11 (0.67) 0.43 (0.11)
UA-XSA —0.67 (0.01) —0.69 (<0.01) —0.54 (0.04) 0.42 (0.13) —0.18 (0.55) —0.53 (0.05)
AUA-XSA 0.22 (0.45) 0.08 (0.78) 0.37 (0.27) 0.23 (0.44) 0.17 (0.56) 0.31 (0.28)
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Fig. 4. The average contour plots + standard deviations for the 16 participants. For each participant, the contours on the left side are considered flow limited and the contours on the

right side are considered normal.

anatomy. These results demonstrate that features of the airflow
contour are associated with UA narrowing and demonstrate po-
tential for detecting flow limitation.

Manual detection of flow limited breaths largely relies on the
visual identification of flattening or scooping in inspiratory airflow
contours [28,29]. However, those visual features have not been
validated with respect to the anatomical properties of the UA. In the
present study, we proposed five temporal features of nasal airflow
and showed that three features including peak amplitude vari-
ability, deviation index, and peak number were strongly correlated
with UA narrowing, indicating their potential physiological rele-
vance. Specifically, the peak amplitude variability represents the
extent of variation of flow amplitude. Highly variable flow ampli-
tude commonly appears during the hyperventilatory period
following apneas and hypopneas. In the present study, a greater
flow variability was associated with a narrower UA-XSA and more
overnight change in NC. Additionally, the deviation index and peak
number were both negatively correlated with baseline UA-XSA

indicating that a higher deviation index and more peaks in the
airflow contour were associated with a narrower UA. This is
consistent with flow limitation since the deviation index describes
the extent to which the airflow contour deviates from ideal airflow
during normal inspiration, while the presence of multiple peaks in
the airflow contour could be attributed to snoring, soft tissue vi-
bration during inspiration, or UA reopening after a partial closure
[11,21]. Overall, these features together can be a powerful analytical
metric for investigation of the UA pathophysiology.

The results from k-means clustering further confirm some of the
results of the correlation analysis. For example, deviation index and
peak number were both greater in the apparent flow limitation
cluster, which is consistent with flow limited breathing and the
relationship of these features with the anatomical properties of the
UA. Similarly, while scooping index did not correlate with proper-
ties of the UA, it was greater in the apparent flow limited cluster,
which is also consistent with the airflow contour of flow limited
breaths. Unexpectedly, kurtosis was higher and peak amplitude
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Table 3

Mean and standard deviation values of each feature to describe differences between clusters representing flow limited and normal breaths.

Silhouette coefficient

Scooping index Peak number Kurtosis

Peak amplitude variability

Deviation index

Participant

Normal

Flow limited

Normal

Flow limited

Normal

Flow limited

Normal

Flow limited

Normal

Flow limited

0.80

1.71 £ 0.17*

2.23 + 0.56
224 +0.52
244 + 045
290 +0.77
2.74 + 141
243 + 0.66
2.39 + 0.54
2.28 + 0.69
2.17 £ 0.36
2.72 + 091
2.46 + 0.67
2.88 +0.50
2.18 +0.47
2.37 £ 0.56
2.65 +0.91
2.40 + 0.46

0.00 + 0.02*

0.28 +0.28
0.27 +0.29
0.35 +0.21
0.09 +0.18
0.19 + 0.24
0.27 + 0.26
0.17 £ 0.23
0.31 +£0.26
0.27 + 0.26
0.07 £ 0.18
0.14 +£0.23
0.14 £ 0.17
0.32 +0.30
0.16 + 0.22
0.18 + 0.26
0.26 + 0.29

1.11 + 0.39*

1.11 + 0.34*

2.87 +2.15
2.72 +1.28
2.06 + 0.27
3.46 + 1.40
2.87 +2.52
2.32 +0.57
292 +1.28
2.28 + 0.62
245 + 0.60
4.07 + 1.96
3.09 + 1.31
2.25+0.70
248 +0.76
2.35+0.72
3.63 +1.86
2.44 + 0.66

1.06 + 0.37

1.12 + 0.95
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Fig. 5. Percentage of inspiratory flow limited breaths (flow-limitation %) was nega-
tively and significantly correlated with baseline UA-XSA (UA-XSA: upper airway cross-
sectional area).

variability was lower in the apparent flow limited cluster,
compared to the normal cluster. We anticipated that kurtosis would
be lower in the flow limited cluster given the more flattened shape
of the flow limited airflow contour. Furthermore, greater variability
in the peak amplitude was anticipated in the flow limited cluster, as
this commonly appears in hyperventilatory period following ap-
neas and hypopneas, as described previously. Future studies should
therefore be cautious to include these features in a model to
automatically detect flow limited breathing.

The k-means clustering algorithm is limited for the current
application in that it divides breaths into either the flow limited or
normal breaths, despite the presence or absence of flow limited
breathing in a participant. It is impossible to know whether clusters
included normal breaths in the flow limited cluster, or vice versa,
without a ground truth measure of flow limitation. Given this
limitation, we computed cluster separability, such that poor sepa-
rability or overlapping clusters would indicate that k-means clus-
tering likely forced a single type of breathing into two clusters. As
shown in Table 3, the mean values of the features are statistically
different between flow limited and normal breaths for nearly every
participant. Moreover, the silhouette values are all greater than O,
and in fact greater than 0.4 for 13/6 participants indicating
adequate separation. In addition, the mean values of the features in
the flow limited cluster, compared to the normal cluster, are
generally consistent with the characteristics of flow limited
breathing, as described in the previous paragraph. Therefore, it is
clear that the flow limited cluster is distinct from the normal cluster
and that the breaths therein demonstrate characteristics consistent
with flow limited breathing.

Statistical classifiers based on the airflow contour were devel-
oped in previous studies to automatically detect flow limited
breathing with high accuracy. Yet, most of those classifiers were
constructed from or validated by the invasive measurement of
pharyngeal pressure or esophageal pressure, which can be
cumbersome to perform routinely [1,22,24]. Previous studies have
proposed supervised [10] and unsupervised [11,21] algorithms to
detect flow limitation. However, the relationship between the
abnormal flow contours and UA narrowing was not investigated.

In our study, we discovered the features of airflow that are
correlated with UA narrowing. We also demonstrated the pre-
sumed relationship between the degree of UA narrowing and the
frequency of flow limitation. We showed that the narrower the UA
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before sleep, the more frequently flow limited breathing occurred.
This is consistent with the previous study indicating that pro-
longed flow limitation of more than 30% of total sleep time is
associated with palatal anatomical abnormalities such as a thick
palate, lateral pharyngeal wall, or uvula in patients with mild
sleep-disordered breathing [4]. Our finding justifies the possibil-
ity of predicting UA narrowing noninvasively with convenient
airflow monitoring [16,30,31].

The potential clinical application of this research is significant.
The standard metrics for assessing the severity of OSA include ap-
neas, hypopneas, arousals, and oxygen desaturation. However,
these metrics are found to be weakly correlated or not correlated
with the clinical symptoms of sleep-disordered breathing in certain
populations such as pregnant women and children [32]. For
instance, frequent presence of flow limitation and arousals is
associated with gestational hypertension and diabetes in pregnant
women [33,34]. Furthermore, in the pediatric population, even
simple snoring with persistent flow limitation, but without
elevated AHI, has been related to impaired cognitive function and
reduced social-behavioral performance [35—37]. Therefore, flow
limitation has been increasingly recognized as a breathing pattern
for the assessment of sleep-disordered breathing which cannot be
determined based on traditional definition of apneas and hypo-
pneas [32]. By leveraging the noninvasive nasal airflow recording
and an automated classification program, we can develop algo-
rithms to evaluate milder, but usually prolonged degrees of inspi-
ratory flow limitation in susceptible populations such as pregnant
women and children. The proposed algorithm will have the po-
tential to complement the existing diagnostic criteria for sleep
related breathing disorders and help develop more appropriate and
personalized treatments to optimize clinical outcomes.

The present study is limited in that flow limitation during
respiratory event-related arousals (RERAs) were not isolated and
analyzed. Flow limitation may have more relevant clinical out-
comes in association with RERA rather than hypopnea [32].
However, the focus of this research is to identify features that
differentiate normal breaths from those with inspiratory flow
limitation. Investigating the potential differences between con-
tours of flow limited breaths during RERA versus hypopnea is an
important question which can be studied in future. In addition,
the features investigated were validated on data of nonobese
men, and the results may not be applicable to other populations
with inspiratory flow limitation, such as children, obese in-
dividuals, and pregnant women. Future studies could validate the
proposed features in a wider range of individuals at risk of
inspiratory flow limitation.

This study is subject to additional limitations: (1) When shallow
breathing or mouth breathing occur, signal amplitude is low and
respiratory onsets become more ambiguous. As a result, the accu-
racy of feature extraction is compromised. (2) Currently the onset
detection was validated against manual identification of onsets,
which may not accurately represent the true onsets. (3) Another
challenge of this study is the lack of pharyngeal pressure mea-
surement, which is considered as the standard assessment of flow
limitation. (4) Finally, the study was performed during the daytime,
which may differ from overnight sleep.

In conclusion, we investigated a set of airflow features capable
of objective detection of flow limitation from the nasal airflow
signal. With this method, we demonstrated that the frequency of
flow limitation is strongly correlated with UA narrowing. Because
the features are extracted from nasal airflow, which is commonly
recorded in full in-laboratory polysomnography and most portable
systems for sleep monitoring, they can be easily implemented in
various sleep studies in the laboratory and at home. The investi-
gated features can be used to develop a classification model for

accurate detection of flow limitation and applied in larger clinical
trials to assess the association between flow limitation and health
outcomes, such as pregnancy complications and birth outcomes in
pregnant women or cognitive function in children who do not have
sleep apnea, but may have flow limitation (See Ref. [38]).
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