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Abstract—In order to develop effective interventions for 

restoring upper extremity function after cervical spinal cord 

injury, tools are needed to accurately measure hand function 

throughout the rehabilitation process. However, there is 

currently no suitable method to collect information about hand 

function in the community, when patients are not under direct 

observation of a clinician. We propose a wearable system that 

can monitor functional hand use using computer vision 

techniques applied to egocentric camera videos. To this end, in 

this study we demonstrate the feasibility of detecting interactions 

of the hand with objects in the environment from egocentric 

video. The system consists of a pre-processing step where the 

hand is segmented out from the background. The algorithm then 

extracts features associated with hand-object interactions. This 

includes comparing motion cues in the region near the hand (i.e. 

where the object is most likely to be located) to the motion of the 

hand itself, as well as to the motion of the background. Features 

representing hand shape are also extracted. The features serve as 

inputs to a random forest classifier, which was tested with a 

dataset of 14 activities of daily living as well as non-interactive 

tasks in 5 environments (total video duration of 44.16 minutes). 

The average F-score for the classifier was 0.85 for leave-one-

activity out in our dataset set and 0.91 for a publicly available set 

(1.72 minutes) when filtered with a moving average. These results 

suggest that using egocentric video to monitor functional hand 

use at home is feasible.  
 

Index Terms—Computer vision, Egocentric, Outcome 

measures, Spinal cord injury, Upper limb rehabilitation.    

I. INTRODUCTION 

ERVICAL spinal cord injuries (SCI) can result in paralysis 

in the upper extremities (UE) and severely limit 

independence in activities of daily living (ADLs). As a result, 

the recovery of arm and hand function is the top priority for 

individuals with cervical SCI [1]. Multiple treatments have 

been proposed for hand function recovery, ranging from 

conventional occupational therapy to functional electrical 

stimulation [2], but further improvements are sorely needed. 

However, in order to develop new and effective interventions, 

as well as adapt current treatments to best suit each 

individual’s needs, it is important to have tools to accurately 

measure hand function throughout the rehabilitation process.  

Most existing outcome measures rely on direct observation 

by a trained clinician in standardized environment (for 

example the Graded Redefined Assessment of Strength, 

Sensibility and Prehension [3], the Toronto Rehabilitation 

Institute Hand Function Test [4], or the Capabilities of Upper 

Extremity Test [5]). Other measures use questionnaires to 

gauge independence in ADLs (e.g. the Spinal Cord 

Independence Measure [6]), but suffer from a reliance on self-

report. An important gap left by these tools is that there is 

currently no viable method to quantitatively collect 

information about UE function and use once a patient has 

returned to their home and community. The importance of 

collecting UE function at home is highlighted in a study by 

Van Den Berg-Emons et al., which found that rehabilitation 

physicians underestimated the amount of inactivity in 

individuals with chronic physical conditions, including SCI 

[7]. 

A wearable sensor that collects such data would give a 

better reflection of a patient’s level of independence at home, 

and help to measure the true impact of an intervention aiming 

to restore function. Methods based on wearable cameras that 

record the user’s point of view (egocentric video) have the 

highest potential in this regard because they provide rich data, 

in contrast to simpler wearable devices (e.g. accelerometers) 

that are unlikely to capture the complexity of human hand 

function.  

Here we propose a novel system aimed at monitoring hand 

use at home. In particular, we focus on the problem of 

detecting interactions of the hand with objects in the 

environment using an egocentric camera. We propose a hand-

object interaction detection system, which we define as 

providing a binary decision about whether or not the hand is 

manipulating an object for a functional purpose, irrespective 

of the specific activity. We postulate that interaction detection 

will form the basis for a flexible and robust system that will 

provide valuable information about the amount of functional 

hand use and level of independence in the community. In this 

work, we demonstrate the feasibility of hand-object interaction 

detection from egocentric video, which is a novel computer 

vision (CV) problem that will form the basis for the proposed 

wearable system.  
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II.  RELATED WORK 

Egocentric vision-based methods have high potential for 

rehabilitation applications because they are wearable, user 

specific, and able to follow ADLs in detail. However, little has 

been done to date to translate advances in egocentric vision to 

rehabilitation applications. The following describes studies on 

wearable technologies in healthcare and egocentric CV 

research that are related to the work described in this paper.     

A. Wearable and home sensors for healthcare purposes 

Applications for wearable sensors in healthcare include 

monitoring of health and wellness, rehabilitation assessment, 

home-based rehabilitation interventions and safety monitoring 

such as fall detection [8]. When the objective is to monitor UE 

function, options based on wearable sensors are currently 

limited. A few studies have explored the use of accelerometers 

or inertial measurement units (IMUs) to monitor arm 

movements and attempt to quantify reaching function. For 

example, in the work by Patel et al. [9], machine learning 

techniques were applied to accelerometer data in order to 

successfully estimate the full Wolf Functional Ability Scale 

(FAS) in stroke survivors. Similarly, Cruz et al. used IMUs to 

predict FAS scores after stroke [10]. Beyond predicting scores 

in specific clinical scales, several groups have demonstrated 

the use of accelerometers to quantify the amount of UE use in 

the community [11], [12]. The accelerometers are able to 

provide information about the ratio of hand use between the 

impaired and unimpaired arm, which is useful after stroke but 

may be less applicable in conditions that result in more 

bilateral impairments, such as SCI. 

While accelerometers have been used to capture 

information about reaching and overall UE use, it remains 

challenging for them to capture information about hand 

function specifically. The versatility of human hand postures 

combined with limitations in sensor placement have made it 

difficult for sensor systems to completely capture the 

complexity of the hand function [13]. A recently proposed 

sensor based on magnetometry can capture information about 

hand movements [14], though the relationship between 

amount of movement and functional abilities is complex and 

requires further investigation [15]. Egocentric vision is a 

recent and promising approach for wearable monitoring of 

hand function. 

B. Egocentric computer vision research for UE monitoring 

Although the use of CV for analyzing hand gestures in 

video from fixed cameras has been the subject of a large body 

of work [13], [16] egocentric-based CV methods have only 

recently become an active topic of research [17], [18]. Most 

relevant to our objective here are studies that have sought to 

analyze UE function from egocentric video [19]. One group of 

studies has considered the problem of hand detection and 

segmentation in egocentric video, which is a crucial pre-

processing step in the extraction of any information about the 

hand. Hand region segmentation in general remains a 

challenging task for egocentric camera systems, as hands and 

the background are dynamic and change rapidly from frame to 

frame, making it hard to separate each region. Recent work on 

hand segmentation has shown that the most robust and reliable 

performance for practical applications is often achieved using 

a flexible colour model of the skin. For example, Li and Kitani 

proposed a system in which a collection of classifiers were 

trained based on colour and texture cues, and the most 

appropriate classifier selected for each given frame under test, 

based on global appearance of the frame [20]. Several 

modifications and refinements to this method have been 

proposed, for example in [21]-[23]. In an alternative approach 

to deal with widely varying illuminations and scenes, work 

from Zariffa and Popovic proposed a method based on colour 

histograms that are adaptive at every frame rather than based 

on a priori colour model [24]. That study, as well as recent 

work by Betancourt et al. [25] and Bambach et al. [26] 

proposed the use of a hand detection step preceding the hand 

segmentation.   

Beyond hand detection and segmentation, there have also 

been attempts to use egocentric videos for hand activity 

recognition in ADLs. Some of these studies have employed 

explicit hand segmentation followed by activity recognition 

[27]-[30] whereas others have performed the activity 

recognition task without explicit hand segmentation [31]-[33].  

However, all of these activity recognition methods are limited 

to a predefined set of activities, which may be too restrictive 

to capture unconstrained hand use in the home or community.     

 To the best of our knowledge, no previous study has 

explored the problem of detecting manipulations between the 

hand and objects (i.e. “hand-object interaction detection”), 

which is a separate problem from recognizing specific 

activities.  

III. METHODS 

This paper focuses on the development of a system that can 

detect interactions of the hand with objects. To facilitate 

development, we began the validation of this algorithm with a 

dataset from able-bodied participants. Application to 

participants with SCI will be addressed in future work.  

A. Dataset 

We created our own dataset, the Adaptive Neurorehabilitation 

Systems Laboratory dataset of able-bodied participants (“ANS 

Able-Bodied”), where a user is wearing a pink glove. The use 

of the glove was intended to allow easy segmentation in order 

to focus our testing on the interaction detection problem. The 

final system will not require the user to wear a glove. The 

ANS Able-Bodied dataset consists of egocentric video 

recordings reflective of ADLs obtained using a commercially 

available egocentric camera (Looxcie 2
TM

) worn by the 

participant over the ear. The video was recorded in .mp4 

format at 480p resolution at 30 frames per second. The data 

collection was performed at the Intelligent Design for 

Adaptation, Participation and Technology (iDAPT) Home 

Lab, a home simulation laboratory in the Toronto 

Rehabilitation Institute, University Health Network, Toronto, 

ON, Canada. For this study, 4 healthy participants (25 ± 6 

years of age) were recruited to perform 14 different common 

ADL tasks (Fig. 1), which are designed to represent everyday 
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activities defined by the American Occupational Therapy 

Association (AOTA) as important (such as personal care, 

eating, and social/leisure participation) [34]. The dataset also 

includes non-interactive tasks from 4 participants (23 ± 1 

years of age), 2 of whom also participated in the ADL set. The 

non-interactive tasks consist of resting the hands statically and 

moving them in the air without any object interactions, in each 

of the environments where the 14 interaction tasks were 

conducted (living room, bedroom, kitchen, washroom and in 

front of the house). Each of the ADL and non-interactive tasks 

range from 629 frames (20.97 seconds) to 11,244 frames (6.25 

minutes) in duration, resulting in 44.16 minutes for the total 

dataset. Note that the ADL recordings also include periods 

when the hand is not interacting with objects (e.g. before and 

after the task, or in between steps of a more complex activity). 

The study participants provided written consent prior to 

participation in the study, which was approved by the 

Research Ethics Board of the institution (Research Ethics 

Board, University Health Network: 13-6950-DE). The dataset 

is available for academic purposes upon request.  

B.  Hand Segmentation 

 For the ANS Able-Bodied dataset, 16 frames of the hand 

wearing the glove were selected from different lighting 

conditions and environments (i.e. different rooms), where a 

rectangular area within the region of the glove was selected as 

a region of interest (ROI). A 3D colour histogram of this ROI 

was generated in the HSV colour space. Hand segmentation 

was then performed with the algorithm described in [24], with 

the exception that the new glove histogram was used instead 

of the Jones and Regh [35] colour model for the hand 

detection step (Fig. 2a, b). 

Beyond capturing a new dataset of our own, we also sought 

to evaluate the effectiveness of our approach using a publicly 

available dataset. We used a subset of the CMU EDSH 

dataset, EDSHK [20], corresponding to 3,104 frames (1 

minute and 43 seconds at 30 frames per second) of making tea 

in the kitchen. Since this publicly available dataset is of a 

user’s bare hand, a skin detection method was used. Because 

the work by Li and Kitani [20] has shown high performance 

on the EDSHK dataset, we used the method described in that 

study for hand segmentation (Fig. 2c, d). 

While both of the segmentation methods described above 

support the segmentation of multiple hands, for simplicity in 

this study only one segmented hand region was selected, 

namely the largest connected component obtained from the 

hand pixel detection process. Note that when one hand crosses 

or touches the other, the algorithm will consider both hands 

together as one segmented region.  

Only frames that contain a hand, based on the hand 

segmentation results, were used in the feature extraction and 

classification.   

C. Feature Extraction 

Designing image features that can robustly differentiate 

between an inactive hand and a hand manipulating an object is 

a research challenge that, to the best of our knowledge, has 

never been addressed before. It is expected that two categories 

of features will play an important role in the interaction 

detection: motion cues and hand shape. These are detailed in 

the following sections.  

 

 

 
(a) 

 
(d) 

 
(g) 

 
(j) 

 
(m) 

 
(o) 

 
(r) 

 
(b) 

 
(e) 

 
(h) 

 
(k) 

 
(n) 

 
(p) 

 
(s) 

 
(c) 

 
(f) 

 
(i) 

 
(l) 

 
 

 
(q) 

 

 

Fig. 1.  Example frames of the dataset collected for each of the 14 ADLs at the Home Lab: (a) pouring a water bottle into a coffee cup, (b) opening a jar, (c) 
picking up a sponge, (d) washing dishes, (e) drying dishes, (f) pouring water from a disposable water bottle, (g) making tea, (h) making a sandwich, (i) changing 

tissue paper, (j) reading a newspaper, (k) pressing the TV remote, (l) hanging a T-shirt, (m) folding a towel, and (n) picking up a tennis ball,  as well as the 

negative data of no interaction in each room: (o) kitchen, (p) washroom, (q) living room,  (r) bedroom, and (s) in front of the house. 

 
        (a) 

→ 
 

                   (b) 

 
(c) 

→ 
 

                       (d) 

 

Fig. 2.  Example of hand segmentation (a) Image from the ANS Able-Bodied 
dataset (b) Binary image of the segmentation of the glove, (c) Image from 

first-person POV video of EDSHK, and (d) Binary image of the 

segmentation of the skin [20]. 
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1) Motion cues: 

Motion cues were obtained using dense optical flow [36]. It 

is expected that when an object is held in the hand, the object 

will be moving with a similar optical flow to the hand. 

Conversely, an item in the frame that is not being interacted 

with will be more likely to have motion similar to that of the 

background, as a result of the motion of the head. It can be 

assumed that the potential object that is being interacted with 

by the hand must be located near the hand, and for this reason 

a bounding box was created around the hand. The box was 

centered on the centroid of the hand segmentation, and its 

dimensions were 10% of the frame height in each vertical 

direction and 15% of the frame width in each horizontal 

direction. Three regions are thus defined: the segmented hand 

(Fig. 3a), the bounding box around the hand (Fig. 3b), and the 

background (Fig. 3c). The dense optical flow was first 

computed for the entire frame and then separated into each of 

these three regions as described above. The dense optical flow 

from each region was summarized into respective histograms 

of magnitude and direction, each with 15 bins. The bins were 

normalized such that the result is the value of the probability 

density function at the bin, i.e. the integral over the full range 

of bins is 1. This allowed the histograms to be compared 

between the three regions, despite their different dimensions. 

The final feature consists of two vectors: the subtraction of the 

histograms of the bounding box near the hand (Fig. 3b) from 

those of the hand (Fig. 3a), and the subtraction of the 

histograms of bounding box near the hand (Fig. 3b) from those 

of the background (Fig. 3a). A lower value after subtraction 

denotes a closer similarity in motion. Therefore, these features 

quantify whether the content of the bounding box has a motion 

more similar to that of the hand or to that of the background. 

2) Hand shape: 

Hand shape may reflect grip type, which would in turn be a 

powerful indicator of hand activity, and was represented using 

histograms of gradients (HOG). The design of our HOG 

features is identical to the work by Cai et al. [37] in grasp 

classification from egocentric cameras. A cell size of 8 × 8 

pixels and block size of 16 × 16 pixels were used. The HOG 

features were extracted from the same bounding box used for 

the hand region and its surrounding in the motion feature 

analysis described earlier (i.e., Fig. 3a and 3b). Since this 

bounding box dimension could change due to the bounding 

box exceeding the dimension of the image or as a function of 

the image resolution, the bounding box image was resized to 

100 by 100. Principal Component Analysis (PCA) was then 

applied to the HOG feature vector in order to reduce its 

dimensionality from 960 to 60 (identical dimensions as the 

features extracted from optical flow). 

D. Classifier  

Given that our goal is to determine if the hand is interacting 

with an object, the nature of the classification is a binary 

classification task. For all of the datasets, we used a random 

forest classifier [38] where the number of trees in the forest 

was 150. We tested a number of trees ranging from 50 to 200 

and determined that 150 trees maximized accuracy.   

The classifier was trained using manually labelled  data 

where each frame is either classified as interaction or no 

interaction. An interaction between an object and the hand is 

only considered to happen when the hand manipulates the 

object for a functional purpose, e.g. resting a hand on the 

object would not constitute an interaction.   

IV. EXPERIMENTS 

To explore the effectiveness of our system in detecting 

interactions as a distinct problem from activity recognition, we 

designed testing such that the system never learned the 

activities beforehand. We also performed testing on a separate 

dataset from a different recording environment and camera 

system.   

A. Leave-one-activity out 

In order to test the robustness of the system in different 

activities and environments, we applied our system to our 

ANS Able-Bodied dataset using a leave-one-activity out 

method. The goal of this evaluation method is to test the 

system on an activity that has never been trained. In other 

words, in ADLs, we left one activity out for testing while 

training on the other 13 activities and the full 5 non-interaction 

tasks. Similarly, for non-interaction task testing, we left one 

non-interactive task out for testing, while training on the other 

4 non-interaction tasks and a full set of 14 ADL tasks. On 

average, depending on the activity being left out, the training 

set consists of 38,264±2,367 frames (1,275.47±78.90 seconds) 

of interaction (51%) and 37,047±2,469 frames 

(1,234.90±82.30 seconds) of no interaction (49%). One ADL 

task used in the test set consists on average of 2,885±2,323 

frames (96.17±77.43 seconds) of interaction (81 %) and 

667±574 frames (22.23±19.13 seconds) of no interaction 

(19%), while one non-interaction task used for testing consists 

on average of 5,955±778 frame (198.50±25.93 seconds, i.e. 

100% no-interaction).  The classification was compared with 

manually labeled data. In order to capture the performance of 

only the hand-object interaction detector, any frame with poor 

hand segmentation was manually eliminated and not included 

in the dataset. The accuracy and the F-score for each left-out 

activity, as well as the overall average accuracy and F-score 

 
 

Fig. 3.  Example of regions for analysis of optical flow of (a) the hand, (b) 

the boxed neighborhood of the hand, and (c) background region further from 

the hand and outside the hand neighborhood box. 

(c) 

(b) 

(a) 

(c) 

(b) 

(a) 



JBHI-00312-2016.R2 

 

5 

are shown in Table I. The F-score is not provided for testing 

on the non-interaction tasks because it is not defined when 

there are no positive entries in the test set.  

B. Testing on a public dataset 

We further evaluated the system using the publicly 

available EDSHK Dataset. Here, the system is trained using 

our full ANS Able-Bodied dataset, which includes 40,390 

frames of interaction (1,346.33 seconds, 51%) and 39,105 of 

non-interaction (1,303.50 seconds, 49%). The EDHSK 

consists of 2,363 frame interaction (78.77 seconds, 76 %) and 

741 frames of no interaction (24.70 seconds, 24 %). The 

classification is compared with data manually labeled for 

interaction, where all frames are included in the dataset, 

regardless of hand detection or segmentation quality. This is to 

provide a realistic assessment of the performance of the 

system, including cases of poor segmentation of the hand from 

the background. The accuracy and the F-score on the test 

EDSHK dataset are shown in Table I.   

Whether the hand is interacting with an object, at rest, or 

moving, the activity will last for a certain duration. We 

therefore applied a moving average filter to the binary output 

of the interaction classifier as well as to the manual labels, in 

order to promote temporal smoothness in the output. We 

constructed the coefficients of our filter so that the last 90 

frames (corresponding to 3 seconds) were equally weighted 

and averaged (Eq. 1).  

 

𝑠𝑖 =  
1

90
∑ 𝑎𝑗

𝑖+90−1

𝑗=𝑖

                                   (1) 

Where { 𝑎𝑗}𝑖=1
𝑁  is the binary hand-object interaction data 

and { 𝑠𝑖 }𝑖=1
𝑁−90+1 is the new sequence after moving average. 

The moving average smoothing method and the associated 

window duration were chosen empirically on the basis of their 

ability to meaningfully summarize the number and duration of 

underlying activities. The output of the moving average was 

then normalized by subtracting the minimum value over the 

entire video and dividing by the difference of maximum and 

minimum values. This was then thresholded such that any 

frame that was > 0.5 was considered to be an interaction (note: 

1 denotes interaction and 0 no interaction). The F-score and 

accuracy after the application of the moving average are also 

shown in Table I.  

The interaction prediction and the true target (ground truth) 

from manual labeling after the moving average are also 

summarized as time series (Fig. 4a), from which meaningful 

metrics of hand use can be extracted, including the number 

and duration of interactions (Fig. 4b). Furthermore, different 

interaction activities and the transitions between them can be 

distinguished (Fig. 4c). Note that Fig. 4 consists of all frames 

in EDHSK including those where the hand is not detected. In 

this example, the interaction detection identified 6 interactions 

with a total duration of 43.28 seconds, while the manual 

labeling identified 5 interactions with a total duration of 42.40 

seconds.  

C. Features Analysis 

We analyzed each of the features by including only one 

type of feature at a time (optical flow or HOG) in the 

classifier. This evaluation was conducted using our dataset for 

each activity as well as by taking the average of the accuracy  

 
 
 

 

 
 

Fig. 4.  (a) Plot of moving average of predicted interaction from the classifier (solid blue line) and manually labelled target (dashed red line) in the EDHSK 

dataset, where 1 is an interaction and 0 is no interaction with the object, as well as the threshold chosen at 0.5. (b) Binary graph showing interaction or no 
interaction decisions, based on threshold crossings in (a). (c) Example frames of the activities in the associated duration. Note that the change from interaction to 

no interaction or vice versa indicates a change in activities.  
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TABLE I 

F-SCORE AND ACCURACY OF LEAVE-ONE-ACTIVITY-OUT AND EDHSK 

Activity left out F-score Accuracy 

Pouring a water bottle 0.86 0.76 

Opening a jar 0.91 0.84 

Picking up a sponge 0.84 0.73 
Washing dishes 0.78 0.66 

Dry dishes 0.90 0.82 

Pouring a disposable water bottle 0.86 0.75 
Making tea 0.87 0.76 

Making a sandwich 0.86 0.76 

Changing tissue paper 0.82 0.71 
Reading a newspaper 0.89 0.80 

Pressing the TV remote 0.88 0.80 

Hanging a T-shirt 0.87 0.78 
Folding a towel 0.86 0.77 

Picking up a tennis ball 0.75 0.61 

Negative - Kitchen  - 0.77 
Negative – Washroom - 0.89 

Negative - Living room - 0.80 

Negative – Bedroom - 0.84 
Negative – Front of the house - 0.87 

Mean (S.D.) 
0.85  

(± 0.04) 

0.77  

(± 0.07) 

EDSHK 0.85 0.76 

EDSHK w/ moving average 0.91 0.85 

Standard deviation provided in brackets. 

 
TABLE II 

F-SCORE AND ACCURACY OF EACH FEATURE 

Activity left out 
Optical flow 

only 
HOG 
only 

 F-score Accuracy F-score Accuracy 

Pouring a water bottle 0.75 0.62 0.85 0.74 

Opening a jar 0.90 0.83 0.90 0.82 
Picking up a sponge 0.73 0.58 0.83 0.72 

Washing dishes 0.79 0.68 0.75 0.62 

Dry dishes 0.80 0.68 0.91 0.84 
Pouring a disposable 

water bottle 
0.72 0.60 0.86 0.76 

Making tea 0.81 0.70 0.87 0.77 
Making a sandwich 0.75 0.64 0.86 0.76 

Changing tissue paper 0.72 0.59 0.83 0.72 

Reading a newspaper 0.58 0.44 0.91 0.84 
Pressing the TV remote 0.63 0.50 0.90 0.82 

Hanging a T-shirt 0.76 0.64 0.88 0.79 

Folding a towel 0.78 0.66 0.87 0.78 
Picking up a tennis ball 0.69 0.59 0.76 0.63 

Negative - Kitchen  - 0.70 - 0.74 

Negative – Washroom - 0.67 - 0.89 
Negative - Living room - 0.74 - 0.78 

Negative - Bedroom - 0.74 - 0.84 

Negative – Front of the 
house 

- 0.79 - 0.84 

Mean (S.D.) 
0.74 

(± 0.08) 

0.65 

(± 0.09) 

0.86 

(± 0.05) 

0.78 

(± 0.06) 

EDHSK 0.74 0.62 0.87 0.78 

Standard deviation provided in brackets 
 

and the F-score over all activities, and finally by testing the 

individual features on the EDHSK dataset (Table II).  

D. Performance Comparison 

To the best of our knowledge, no previous algorithms have 

been proposed for the interaction detection problem. In order 

to provide a comparison point for our results, we implemented 

a simpler approach based on the assumption that in egocentric 

videos the hand will be visible mainly when the user is 

interacting with objects. Thus, the comparison method 

(“Visible Hand”) classifies any frame where the hand is  

TABLE III 

ACCURACY OF VISIBLE HAND AND INTERACTION DETECTION METHOD 

Dataset 
Visible 

Hand  

Interaction 

Detection 

ANS Able-Bodied -   

ADL tasks (S.D.) 

0.86 

 (± 0.04) 

0.81 

(± 0.04) 

ANS Able-Bodied -   
Non-interactive (S.D.) 

0.33  
(± 0.06) 

0.89  
(±0.04) 

Mean (S.D.) 
0.72  

(± 0.24) 

0.83  

(± 0.06) 

EDSHK 0.80 0.76 

Note that this table considers all frames, including those with no hands 
(frames with poor segmentation are still excluded from the ANS dataset). 

Standard deviation provided in brackets 

 

present as containing an interaction (Table III). For the ANS 

Able-Bodied dataset, Table III considered the same frames as 

those from Tables I and II, plus frames with no hands. For the 

EDHSK dataset, all frames are included for all analyses. 

V. DISCUSSION 

Outcome assessment of the upper limb is crucial in the 

evaluation of interventions to help restore function after 

cervical SCI. Despite the importance of having appropriate 

outcome measures, there is currently no suitable method to 

collect information about hand function in the community. In 

this study, we demonstrate the feasibility of interaction 

detection from egocentric video, which can reflect functional 

use of the hand. This approach can be used as the basis for a 

wearable system that has the potential to automatically collect 

data about hand use in the home and community environments 

and provide clinicians and researchers with valuable new 

outcome measures. An individual who is able to independently 

perform ADLs involving the UE is likely to have more 

frequent interactions with objects than a more impaired 

individual. 

The interaction classifier designed in this study is robust in 

multiple activities seen in ADLs, as shown by the F-score, 

which averages 0.85±0.04 for the tasks in our dataset (Table 

I). The classification is also robust against non-interactive 

data, as shown by the average accuracy of 0.83±0.05 (row 15 

to 19 of Table I).  

The classifier was also shown to be perform well on a 

publicly available dataset (F-score of 0.85 on EDSHK), 

showing it to be robust to variations in environments and 

camera systems.  

The use of a moving average smoothed out short-term 

fluctuations and highlighted longer-term trends. Consider Fig. 

4, where the moving average and binary interaction graph is 

plotted against the number of frames in the video. Here we can 

clearly observe the number and duration of each of the 

interactions. This suggests that the change from no interaction 

to interaction corresponded to transitions between activities as 

seen in the example frames. This example revealed that an 

interaction detector could be used to capture meaningful 

metrics for the measurement of hand usage at home. Note that 

in Fig. 4 at frame 1 to 139, the hand segmentation fails to 

detect the hand and instead detects cardboard and wooden 

objects as hands. This resulted in the descending pattern in the 

predicted interaction. The results highlight the importance of 

accurate hand detection and segmentation.  
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In the ADL tasks and EDHSK, the Visible Hand method 

outperformed our algorithm in ADLs activities. In contrast, 

our algorithm had considerably better performance than 

Visible Hand for the non-interactive tasks, and higher overall 

classification accuracy on our dataset with all frames included 

(Table III). The success of the Visible Hand approach in the 

videos with activities is likely an artefact of the datasets used, 

which contain ADLs that are realistic in execution but not in 

frequency of occurrence. A study on hand use based on 

accelerometer by Lang et al. found that healthy control 

participants used their upper extremities 8–9 hours per day. 

However, hemiparetic participants used their affected and 

unaffected upper extremities substantially less than control 

participants, 3.3 and 6.0 hours per day, respectively [39].  

While that study does not explore hand use in SCI, it is 

expected that hand use would be similar or lesser than in 

hemiparetic individuals. This difference was shown by another 

accelerometer study with sensors on both the upper and lower 

extremities, which revealed that individuals with SCI had the 

lowest levels of activity among chronic physical conditions, 

i.e. 34% compared to able-bodied and 50% compared to stroke 

[7].  In other words, real recordings of daily life will contain 

much larger stretches with no interactions than our synthetic 

dataset, particularly in individuals with SCI. Thus, it is 

important to correctly classify hands at rest on a table or a lap, 

as this is expected to constitute the majority of video frames, 

particularly considering the field of view of many existing 

commercial cameras. Our algorithm has been shown to be able 

to distinguish idle hands from hands engaged in functional 

activities, and is therefore likely to translate better to real-life 

applications. 

Another conceivable method for interaction detection would 

be to use an activity recognition approach, with a “no activity” 

class used to denote the absence of interaction, and any other 

activity class considered an interaction. However, this 

approach has several shortcomings. Activity recognition is 

typically a multiclass classification problem that is inherently 

limited to a predefined set of activities, which may be too 

limiting for unconstrained data collection in the home or 

community. Furthermore, many previous studies in egocentric 

activity recognition did not include a class for no activities 

[28]-[33]. Activity recognition also typically required multiple 

preprocessing steps, which may increase computational 

complexity. For example, a study by Pirsiavash et al. designed 

a hand manipulation detector after an object detection step, by 

determining if the object is active or non-active, based on 

scale and location of the object with respect to the hand [32]. 

Similarly, Matsuo et al. used an attention classifier as a 

preprocessing step for hand manipulation, by considering the 

salience of the detected objects [33]. 

We explored the contribution of different features to the 

classification performance in the interaction detection 

problem. Our main finding on this point, as shown in Table II, 

is that both the optical flow and HOG features individually 

were able to provide information about hand-object 

interactions. The average F-score when using only optical 

flow was lower than when using only HOG by 0.12 in the 

leave-one-activity-out and lower by 0.13 for in EDHSK. The 

comparison of overall leave-one-activity-out and EDHSK 

results in Tables I and II suggests that HOG alone may be 

sufficient for interaction detection in able-bodied individuals. 

However, future examination is needed to determine how well 

these findings can be generalized, since the results are only 

different by 0.01 and 0.02 respectively. In particular, in 

rehabilitation applications, hand postures will generally be 

impaired and may therefore deviate significantly from those 

observed in the able-bodied population [40]. It is possible that 

relying on hand shape alone in this context may lead to poor 

performance or require classifiers tailored specifically to 

different types and severities of injury. Further work in 

clinical populations will be needed to elucidate these issues. 

Several challenges remain in the segmentation of the hand 

from egocentric recordings. Factors that can reduce the 

performance of an egocentric wearable sensor include glare, 

faulty segmentation due to objects in the background with 

colour similar to skin (such as from a wooden floor, door and 

table), as well as high computational time. However, research 

on the development of a robust segmentation approach is 

progressing, as described in the related work section. Since the 

work presented in this paper is designed to be a proof of 

concept for the interaction detection problem, we have used a 

coloured glove for easier segmentation and to minimize errors 

that may arise from poor segmentation. The use of the glove 

will be eliminated in future work to make the system practical 

for clinical use.  Nevertheless, we have shown a reasonable 

performance of our interaction detection in a public dataset, 

EDSHK, while using a previously reported segmentation 

algorithm [20], which demonstrates our system is 

generalizable.  Future work is also needed to further test the 

system in a greater variety of environments and segmentation 

situations.  

It is also important to explore the interactions on a hand-by-

hand basis when multiple hands are present in a frame. This 

consideration is important to ensure that all interactions by 

either hand are appropriately captured, as well as to better 

measure the user’s independence and reliance on attendant 

care. This includes implementing an algorithm for 

differentiating object manipulations performed by the user’s 

right and left hands as well as manipulations performed by a 

caregiver [41].   

Another limitation of this study is the use of artificial no-

interaction situations. The ANS Able-Bodied dataset 

contained sections with no interactions (an overall balance of 

51% interaction and 49% no interaction in the dataset), 

including resting hands and moving hands without interaction. 

However, within the individual ADL interaction tasks of this 

dataset (Fig. 1a-n), proportionally there is a larger number of 

frames with interactions (81%) than frames without interaction 

(19%), which creates a risk for overfitting, in particular when 

the classifier is used in real world applications. Rather than 

intentionally resting or moving the hand, future work will 

need to focus on providing more natural no-interaction frames 

through recordings in the home or community.  

Future work will also need to explore possible reasons why 

some activities performed better than others. Based on visual 

observation, activities that involved complex bimanual tasks 

(e.g. washing dishes) or handling small objects, where the 

hand covers the object (e.g. grabbing a tennis ball), more often 

had low accuracy in detection. A controlled experiment of 

different object sizes and hand movements is to be explored.  
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Moreover, future work will need to address the 

computational limitations. The current algorithm suggested in 

this study remains computationally expensive for a mobile 

device. The segmentation of the hand using Li and Kitani’s 

method took 18.84 seconds per frame on average, while the 

feature extraction for hand-object interaction took 0.18 

seconds for optical flow and 0.13 seconds for HOG with PCA 

feature extraction. The hand-object interaction classification 

took 0.0029 second per frames (Intel® Xeon® E3-1241 

v3: 3.50GHz, DDR3-1600MHz ECC: 16GB). Ideally, the 

system will need to process videos in real time, such that no 

video needs to be stored, only the extracted metrics. This will 

address privacy and confidentiality concerns for the user. 

Nevertheless, the current approach of off-line processing is 

still useful in many research applications, for example, using 

this tool to assess the impact on daily life of a new UE 

intervention after SCI. Even in the absence of real-time 

processing capabilities, privacy issues can be effectively 

managed by giving users the ability to turn off the camera at 

any time and to review videos before they are shared with 

investigators.   

VI. CONCLUSION 

This study has shown that it is possible to use an egocentric 

wearable camera to monitor interactions between the hand and 

objects in the environment. This work may serve as the basis 

for a wearable system to monitor functional hand use at home 

in neurorehabilitation applications. The system consists first of 

a pre-processing step, where the hand is segmented out from 

the background. We then extract features that are relevant to 

hand interactions, which include motion cues in the form of 

optical flow and hand shape information based on HOG. Our 

study shows that these features provide a strong basis for a 

hand-object interaction detection classifier that is reliable in a 

variety of activities and environments. Furthermore, after 

smoothing, changes between the interaction and no interaction 

states may serve as good indicators of the occurrence of 

discrete activities performed by the hand.  
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