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Prediction of specific hand movements using
electroencephalographic signals
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Objective: To identify specific hand movements from electroencephalographic activity.

Design: Proof of concept study.

Setting: Rehabilitation hospital in Toronto, Canada.

Participants: Fifteen healthy individuals with no neurological conditions.

Intervention: Each individual performed six different hand movements, including four grasps commonly targeted
during rehabilitation. All of them used their dominant hand and four of them repeated the experiment with their
non-dominant hand. EEG was acquired from 8 different locations (C1, C2, C3, C4, CZ, F3, F4 and Fz). Time-
frequency distributions (spectrogram) of the pre-movement EEG activity for each electrode were generated
and each of the time-resolved spectral components (1 Hz to 50 Hz) was correlated with a hyperbolic tangent
function to detect power decreases. The spectral components and time ranges with the largest correlation
values were identified using a threshold. The resulting features were then used to implement a distance-
based classifier.

Outcome measures: Accuracy of classification.

Results: A minimum of three different dominant hand movements were classified correctly with average accuracies
between 65-75% across all 15 participants. Average accuracies between 67-85% for the same three movements
were achieved across four of the 15 participants who were tested with their non-dominant hand.

Conclusion: The results suggest that it may be possible to predict specific hand movements from a small
number of electroencephalographic electrodes. Further studies including members of the spinal cord injury
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community are necessary to verify the suitability of the proposed process.
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Introduction

Recent studies suggest that the use of a brain-computer
interface (BCI) as part of a temporary therapeutic inter-
vention to restore voluntary movement after spinal cord
injury and stroke can result in greater and/or faster out-
comes when compared to other interventions.''* A BCI
uses brain signals to control electronic devices.
Although there are several approaches for implementing
this technology, a common strategy consists of detecting
changes in the activity of the brain related to motor
activity. These changes, typically measured using stan-
dard electroencephalographic (EEG) techniques, are
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often observable not only during movement, but also
before the actual movement starts and even by simply
imagining it (i.e., no movement is actually required).
This makes BCI technology suitable for operation by
individuals with limited mobility as a potential access
method. More importantly, the technology offers a
unique opportunity to access neurological markers in
real-time and integrate them into motor rehabilitation.
For example, by using a BCI it could be possible to
ensure that patients with high levels of impairment are
engaged in motor tasks practiced during therapy or to
facilitate an attempted movement by triggering suitable
mechanism (e.g., electrical stimulation) at an optimal
time to produce neuroplastic changes leading to motor
recovery. It is believed that this increased precision
afforded by BCI enhances the efficacy of therapy.
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The use of a BCI as a tool for restoring voluntary move-
ment has taken two main approaches. First, patients can
engage in BCI sessions in which they learn how to
produce normal oscillatory EEG activity (e.g. power
decreases in the mu and beta frequency ranges) by imagin-
ing movements of their impaired limbs. These sessions are
immediately followed by regular physical therapy.
Ramos-Murguialday ef al.' recently reported the results
of a study in which chronic stroke patients learned how
to use a BCI by imagining movements of their impaired
arm/hand. The BCI detected decreases in power of
EEG in the mu and beta frequency ranges and activated
an orthosis that would facilitate imagined movement.
After a BCI session, patients would receive conventional
physical therapy. The intervention resulted in significant
changes in upper limb function. It is believed that the nor-
malization of EEG activity leads also to the normalization
of activity in any remaining neural structures involved in
motor function resulting in an increased ability to move
voluntarily.?

A second strategy for using a BCI as a short-term thera-
peutic intervention uses the technology to detect the
patient’s intention to move and simultaneously activate a
device designed to produce the intended movement. In
2009, Daly et al. used functional electrical stimulation
(FES) activated with a BCI to restore voluntary move-
ments in a single participant 10 months after sustaining a
stroke. In the intervention the participant attempted to
move her index finger and the BCI triggered an electrical
stimulator to produce the intended movement. After nine
sessions, the participant’s ability to move her index finger
voluntarily improved. Earlier this year, Donatti et al. pre-
sented a 12-month multi-stage intervention to restore
gait combining BCl-activated lower limb actuators,
visuo-tactile feedback, and an immersive virtual reality
system.'* The eight participants of that study had
chronic (> 3 years) spinal cord injury (SCI) resulting in
paraplegia and seven of them had complete injuries. Half
of the participants’ injuries were reclassified as incomplete
at the end of the intervention with all of them showing
improved somatosensory and motor control improve-
ments. More recently, our group tested the efficacy of a
BCl-triggered FES therapy to restore reaching movements
in an individual with chronic severe hemiplegia resulting
from a stroke sustained six years prior to the study. After
40 90-minute sessions (typical duration of our interven-
tions), the participant registered a clinically meaningful
improvement (Fugl-Meyer upper extremity sub score of
13 and 19 at the beginning and end of the intervention,
respectively). Important to note is the fact that all other
prior interventions, including FES alone, had failed to
produce any change.'’

The motivation for using a BCI to trigger an assistive
device upon detection of a person’s intention to move
lies in the belief that matching the motor command (pro-
duced by an attempted movement) with its corresponding
sensory feedback (generated by the artificially produced
movement) produces changes in the central nervous
system also resulting in improved motor function.> The
same idea has also been proposed as an explanation for
the recovery produced by FES,'® for which we have
developed technologies and interventions for two
decades.'® %

At the moment, it is not known if identifying and
facilitating specific movements, using a BCI in combi-
nation with other therapeutic interventions (e.g. FES
therapy), will result in greater recovery of voluntary
motor function. In addition to a precise indicator to
inform when to facilitate an attempted movement,
such a system would allow for the independent control
of opposite movements (e.g. palmar grasp and hand
opening) instead of a preprogrammed sequence of
movements produced automatically, an approach com-
monly used today. This unprecedented level of transpar-
ency could, in turn, allow the inclusion of sequential
movements initiated by patients in BCI-driven therapies

We present here a new approach toward predicting
multiple hand movements performed with the same
limb. This work represents an initial step towards testing
the therapeutic effects of FES therapy that can identify
and facilitate movements with a high degree of specificity.

Methods

Participants

Fifteen healthy adults participated in this study,
approved by the Research Ethics Board of the Toronto
Rehabilitation Institute University Health Network,
after providing written informed consent (Table 1).

EEG Recordings

We recorded EEG from all participants over central and
frontal regions (C1, C2, C3, C4, Cz, F3, F4, and Fz of the
extended version of the 10-20 system for electrode place-
ment), referenced to linked earlobes using the right clavi-
cle as ground. The impedance was kept bellow 5 kQ and
we used a sampling frequency of 1 kHz (Synamps RT,
Neuroscan, NC, U.S.A). EEG signals were high-pass
filtered at 0.15 Hz prior to their recording.

Kinematic recordings

Participants wore a custom-made sensor glove, which
captured the onset of hand movements using a resistive
sensor (Fig. 1). The glove produced a variable
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Table 1 Participant’s demographics and completed tests
Completed test

Non-

Age Dominant  Dominant

Participant (Years) Sex Handedness hand hand
AAO01 28 M R Yes Yes
AA02 41 M R Yes Yes
AA03 25 M R Yes Yes
AAO4 40 M R Yes No
AA05 27 M R Yes No
AA0B 33 M R Yes No
AA07 33 F R Yes Yes
AA08 39 F R Yes No
AA09 24 F R Yes No
AA10 27 F R Yes No
AA11 24 F R Yes No
AA12 43 M R Yes No
AA13 25 M R Yes No
AA14 40 M R Yes No
AA15 30 F L Yes No

differential output (with a maximum amplitude of
5 mV) and was connected directly to the EEG headbox.

Additional Experimental Instrumentation

A photo resistor (optical sensor) detected the experimen-
tal cues provided to the participants on a computer
monitor of each experimental trial. This sensor’s differ-
ential output (maximum amplitude of 5 mV) was also
connected to the EEG headbox. Figure 2 illustrates a
normalized sample of the three types of recording:
EEG, optical sensor, and sensor glove.

Procedure

Experimental Task

Participants performed six hand movements including:
all-finger extension (hand opening), two-finger pinch,
palmar grasp, lumbrical grasp and two tasks referred
to as non-functional movements 1 and 2 (letters ‘V’
and ‘Y’ of the American Fingerspelled Alphabet,

FSR

Figure 1 lllustration of sensor glove used to detect the onset
of movement. A force sensitive-resistor was sewn into a glove
overlaying the participant’s first finger, indicated as FSR in
Figure 1. The movement of the participants’ hand creates a
change in the FSR value (from 60-110kQ) resulting in a change
in voltage (Fig. 2).
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respectively) (Fig. 3). With the exception of the non-
functional movements, all of the hand movements are
commonly targeted during rehabilitation after stoke
and spinal cord injury. All 15 participants completed
the hand movements with their self-identified dominant
hand and four of them repeated the experiment with
their non-dominant hand during a second session,
which was conducted to measure the robustness of the
signal analysis developed for this study.

Experimental sequence

The participants were seated comfortably in front of a
computer monitor throughout the duration of the exper-
imental session. At the beginning of each trial, the par-
ticipants were asked to relax for 10 seconds while
focusing on a fixation cross. Next, visual cues were pre-
sented in the following sequence: a yellow circle (ready),
a picture of the movement to execute, a green circle (go),
and finally a red circle (stop). Each person completed six
blocks of trials wherein the six hand movements were
presented in a random order (Fig. 4). The participants
were given the opportunity to rest between each block
of trials.

Data Analysis

Feature Extraction

The EEG was processed offline with a custom-made
Matlab ® (version 2012a, MathWorks, Natick, MA,
U.S.A.) program. We first eliminated trials in which
an incorrect movement or no movement was performed.
Remaining trials were grouped according to the move-
ment performed and aligned to the onset of movement
determined with the output of the sensor glove. Seven

Example of Signals Recorded During the Study
Raw EEG Signal during a Single Trial

T T T T

Signal from Optical Sensor, Indicating Experimental Stage
T T T T

e TN

Signal from Hand Sensor, Indicating Movement

Normalized Signal Voltage
T ,

2 0 2
Time (s)
Figure 2 Example of signals recorded by the EEG amplifier
during an experiment. Top row: an EEG signal from C3 location.
Middle row: the output of the optical sensor placed against a
monitor screen during the experiment, which was used to
identify the stage (i.e. ready, go, stop) of the experiment.
Bottom row: the output of a resistive sensor glove worn by
participant during the experiment and was used to determine
the onset of hand movement.
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Figure 3

lllustration of the six hand movements performed by the participants. From left to right: non-functional grasp 1, palmar

grasp, non-functional grasp 2, hand opening (extension of all fingers), two-finger pinch and lumbrical grasp. These movements were
chosen based on their relevance to post-stroke rehabilitation (i.e. extension, two-finger pinch, lumbrical and palmar grasps). The
two non-functional grasps were intended to provide additional test cases for the study.

seconds of each trial, including 4 s before and 3 s follow-
ing the onset of movement, were extracted for further
analysis. We performed a temporo-spectral decompo-
sition of each trial using a 256-point Hamming
window with a 120 sample overlap, and a resolution
of 1 Hz for frequencies between 1 Hz and 50 Hz for each

data points, over the period between 4 s and 0 s prior
to the onset of movement. The correlation coefficients
were estimated using the following equation:

C(ERD;y, ;)

R(l’ (ERD.\'yn’fj")) = (2)

C(ERDyy,, ERDy,,)C(f;, f7)
trial and electrode (spectrogram function, Matlab ®). v . o

This resulted in a 50x50 (time-frequency) matrix. Each
time-resolved frequency component (1 Hz to 50 Hz) of
every dataset was then normalized with respect to its
own maximum value and smoothed using a moving
average filter with a window length of 10 data points.

We then used a hyperbolic tangent function to
approximate the general shape of a decrease of power
(event related desynchronization or ERD?') typically
observed prior and during voluntary movement:

where R refers to a matrix of cross correlation
coefficients between the synthetic ERD signal
(ERDyy,) and a time-resolved frequency signal (f)),
j€[1,2,...,50] refers to each frequency analyzed,
i€l,2,...,20] refers to each time instance the cross
correlation calculation was applied. C(ERDy,,, f;) is
the covariance between the ERD signal and a time-
resolved frequency signal. C(ERD;y, ERDy),) is the var-
iance of the ERD signal, and C(f}, f;) is the variance of
the time-resolved spectral component. Figure 5 shows
the application of equation 2 for the first 16 time
intervals.

A threshold n was then applied to the result of each
sequence of cross-correlation calculations according to
the following criterion:

ERD,,, = —(tanh (4n)/3) + 0.5 (1)

evaluated over 20 points with an intersample resolution
of 0.1 (i.e.,, n=[—0.8, —0.7, ..., 1.1]. Next, we calcu-
lated the cross-correlation function between each of
the time-resolved frequency components (which were
20 data points in length) and the hyperbolic tangent
function (equation 1) at 20 instances prior to the onset
of movement with an overlap between segments of 19

6o, ={ o wZ G

nOmDmD

Figure 4 Sequence of scenes presented to the participant during a trial. Top row from left to right: ‘fixation cross’, presented to the
participant at the start of every trial. A yellow circle, presented at time 1.0-3.5 s, indicating to the participant that a hand movement is
about to be presented. A picture of the hand movement to be performed, presented at time 3.5-5.0 s. A black screen is then

presented at time 5.0-7.0 s. A green circle, presented at time 7.0-7.5 s, indicating to the participant to perform the hand movement,
followed by a black screen presented during the execution of the hand movement at time 7.5-9.5 s. Finally, a red circle, presented at
time 9.5-10.0 s, indicating to the participant to relax their hand. Bottom row: The sequence is repeated with the next hand movement.
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Cross-Correlation-Based ERD Detection Process

Normalized Signal Voltage

— 73 HZ EEG
== st Instance of ERD
———Subsequent Instances of ERD

3 0
Time Relative to the Onset of Movement (s)

Figure 5 lllustration of the process by which cross-correlation coefficients were generated: In black, a 23 Hz smoothed and
normalized time-resolved spectral component recorded during a two-finger pinch task. In grey, multiple instances of the synthetic
ERD signal where cross-correlation coefficients were calculated. Movement onset occurred at Os.

Where k is the number of trials available and G,contains
binary values of correlations that exceed a specific
threshold: n € [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9].

For each hand movement and each electrode, an
average (similar to the one presented in Fig. 6) was gen-
erated. We refer to these averages as ‘all-in’ templates
because they include every trial in the averaged data
set. For a single electrode site, each participant had
six ‘all-in” templates - one for each hand movement
(Fig. 7). Next, ‘one-out’ templates were created by itera-
tively eliminating 1 trial and calculating the average of
the remaining trials; for a hand movement executed 30
times, 29 ‘one-out’ templates represented by 20x50x29

(time instances-frequency-trial number) three-dimen-
sional arrays were generated.

Classification

The Euclidean distance between an ‘all-in’ template for
a particular movement (Fig. 6) and an individual trial of
a different hand movement was used as a measure of
similarity between the two movements. For example,
using data from a single electrode site and correlation
threshold, the distance between the first trial of the
non-functional movement 1 and the average of all
trials of the two-finger pinch, was calculated with the

Significant Correlation Data Averaged Over 30 Trials
for a Single Participant: Two-Finger Pinch

-2.5 IIDIIIIIIIIIIIIIEIDIDDEIIL}I_IULJIIII_!UIJIJIJI_II_JDDDEIIIDIIII
‘ BEEEEOE JO0BE0nEN

CEREERCDEEN
EEREEREO00

Time Relative to the Onset of Movement (s)

20 30
Frequency (Hz)

Figure 6 Example of the average of all significant correlation data for 30 trials of the two-finger pinch grasp (‘all-in’ template) for
electrode F3 using a threshold of 0.8. The x-axis displays frequency from 1 to 50 Hz and the y-axis shows time intervals prior to the
onset of movement. Warmer colours represent a higher instance of significantly correlated area.
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Average Significant Correlation Data for Each Hand Movement
at Electrode C3

Two-Finger Pinch Non-Functional Grasp 1

Lumrical Grasp Hand Opening

o |

Non-Functional Grasp 2 Palmar Grasp

1.. '3 s
Frequency (Hz)

Figure 7 The average of all significant correlation data (‘all-in’
template) for each hand movement recorded with the C3
electrode. The x-axis displays frequency (1 Hz - 50 Hz) and the
y-axis time intervals prior to the onset of movement. Warmer
colours represent a higher incidence of significantly correlated
area, and cooler colours represent a lower instance of
significant correlations.

following equation:

Npinch

> GG j. k),

DA, Ay = |Gl D = * = (4)
mc

Where D(Ai, Aj),; is a matrix containing the element-
to-element distances between the first trial of the non-
functional movement 1 (G(i, j, 1)) and the average of
all trials of the two-finger pinch. For the rest of the
classification process, equation 4 was then applied
using the first trial of the non-functional movement 1
and the average of the remaining movements including
the lumbrical grasp, hand opening, non-functional
movement 2, palmar grasp, as well as the average of
the non-functional movement 1. However, the average
used for the non-functional 1 movement in this oper-
ation excluded the trial being classified.

The resulting six matrices containing the distances
between trial 1 of non-functional movement 1 and all
six movements were assembled in a 20x50x6 three-
dimensional array. Next, this multi-dimensional array
was summed along the 2™ dimension (i.e. frequencies
included in the analysis), resulting in a 20x6 matrix.
The minimum value at each time instance was then
identified and assigned a value of 1 and all other
entries given a value of 0. (Classification of an individ-
ual trial is possible through summation along the time

dimension with the winning class identified by the
largest result.) This process was then applied to every
trial of non-functional movement 1, resulting in Nyg
20x6 matrices, where Nyp; 1s the total number of non-
functional 1 movement trials. The percentage of trials
identified correctly as the non-functional 1 movement
was then calculated.

To complete the classification for the non-functional
movement 1, we repeated this process for every electrode
site and every value of correlation threshold tested
(listed above). The highest percentage of classification
across 56 matrices (8 electrode sitesx7 values for
threshold) was selected to classify the movement. In
addition, the time interval in which this value was
found was indicative of the moment in which the classi-
fication had taken place, prior to the onset of move-
ment. All of the movements were classified using the
procedure described in this section.

In addition to estimating the classification accuracy
using the information from all of the available electro-
des, we explored the effects on the classification accu-
racy of the location of the electrodes included in the
process (i.e. ipsilateral, contralateral, or placed along
the midline), and of the hand (dominant or non-domi-
nant) used to perform the movements.

Results

The participants performed between 141 and 187 trials.
All of them completed the experiment using their domi-
nant hand and four repeated the task with their non-
dominant hand (Table 1).

Classification Accuracy

A minimum of three different dominant hand move-
ments were classified with average accuracies greater
than 60% across all 15 participants (Table 2). Average
accuracies between 67-85% for the same movements
were achieved across the four participants when tested
with their non-dominant hand (Table 3). Among the
hand movements included in this experiment, the
palmar grasp was identified with the highest average
accuracy (75.9% +/— 5.5%) and the lowest classifi-
cation accuracy (2.4% +/— 0.7%) was obtained for
the all-finger extension (hand opening) when results
from all electrodes are averaged.

Effect of the Electrode Location on Classification
Accuracy-Contralateral vs. Ipsilateral

There was a significant difference (t-test, p=0.01)
between the averaged classification accuracies of the
contralateral (53.0% +/— 14.4%) and ipsilateral
(36.2% +/— 17.7%) electrode group for the non-
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Table 2 Classification accuracies averaged across all participants, electrode groups, and correlation thresholds for dominant hand

movements

Pinch NF1 Lumbrical Extension NF2 Palmar
Electrodes % (+SD) %/ (+SD) %(+SD) %(+SD) %(+SD) %/ (+SD)
All 74.1(x4.1) 64.5(+11.7) 56.6(+15.8) 2.4(+0.7) 65.8(+10.0) 75.9(+£5.5)
Contralateral 68.1(+4.6) 51.9(x17.2) 49.5(+16.2) 2.0(=0.8) 53.0(x14.4) 57.7(+15.6)
Ipsilateral 67.9(+6.6) 48.1(+18.7) 40.7(+18.2) 2.1(x0.7) 36.2(+17.7) 61.7(+13.4)
Vertex 65.5(+4.2) 50.1(x=17.0) 34.1(=17.3) 1.0(+0.7) 43.1(x16.1) 62.2(+14.3)

functional movement 2 when performed with the domi-
nant hand. No other significant difference in classifi-
cation was found between the contralateral and
ipsilateral electrodes. When the non-dominant hand
was used, no significant differences between the contral-
ateral and ipsilateral group were identified for any of the
six movements (Tables 2 and 3).

Effect of Hand Dominance on Classification
Accuracy

There was one statistically significant difference in
classification between the dominant (66.5%) and non-
dominant (44.8%) hand (t-test, p=0.04): the pinch
grasp was classified with a significantly higher average
accuracy when the dominant hand was used for the Cz
and Fz electrode group (Fig. 8).

Classification prior to Movement Onset

The average time when each trial was successfully classi-
fied ranged from: 1.2 s +/— 08 st0 0.7s +/— 09 s
prior to movement for the dominant hand, and 0.7 s
+/—09sto04s +/— 04 s for non-dominant hand
movements across participants (Table 4).

Discussion

This report, to the best of our knowledge, is the first on
the prediction of different hand movements targeted in
rehabilitation of stroke and spinal cord injuries using
EEG activity. The method described here is able to
differentiate a minimum of three different movements
from pre-motor EEG activity for every participant
enrolled in this study, with individual accuracies
between 60-100% and average accuracies between 67%
and 85%.

The focus of our work was the development of a
simple feature extraction process and we will explore
more sophisticated techniques in our future work. Our
results are similar to the results reported by Zhou
et al.**> (92% accuracy for prediction of elbow flexion
and shoulder abduction torque) and Xiao> (45% for
individual finger decoding). However, our work pre-
sented here used a maximum of eight EEG electrodes,
compared to the 163** and 128 sensors,”® making it
more viable for its use in a clinical setting.

Not surprisingly, our results suggest that the relation-
ship between the type of movement performed and
location of relevant EEG features cannot be generalized
across the participants included in this study. It is impor-
tant to mention that we have not tested the presented
method using data collected across multiple days.
Investigation on the stability of the method across differ-
ent recording sessions, as well as other elements such as
fatigue, are warranted.

The EEG event of interest to the proposed method
(ERD) has been observed as early as 1.5 s prior to move-
ment, and was detected in a recent study in real-time an
average of 0.62 s before movement.>* The average time
intervals reported using the proposed classification
method are within this range. However, the inter-trial
variance associated with the reported average for the
same movement for each participant suggest that the
time in which the ERD takes place is unique to the indi-
vidual, the movement, and the trial.

Classification of hand opening movements was
unsuccessful (< 16%) in all participants. Predictably,
when all data pertaining to hand opening were
removed post-hoc, the average accuracy of movement

Table 3 Classification accuracies averaged across all participants, electrode groups, and correlation thresholds for non-dominant

hand movements

Pinch NF1 Lumbrical Extension NF2 Palmar
Electrodes %/ (+SD) %(+SD) %/ (+SD) %(+SD) %(+SD) %(+SD)
All 67.5(+4.2) 78.7(+9.5) 76.0(+£9.8) 2.6(+0.08) 62.3(+6.1) 85.1(+£5.2)
Contralateral 63.6(£3.0) 73.0(£9.6) 56.8(+21.2) 2.0(+0.6) 41.8(+14.0) 83.2(+5.1)
Ipsilateral 53.8(=17.9) 54.5(+19.6) 69.3(+6.5) 1.1(x0.6) 46.8(+16.9) 76.0(£6.9)
Vertex 59.8(+5.8) 80.3(+7.3) 75.9(+6.5) 2.4(+0.04) 35.3(£15.4) 83.2(+4.0)
The Journal of Spinal Cord Medicine 2017 voL. 40 NO. 6
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Average Classification Accuracy for

Dominant and Non-D t Hand Mov t
A) I Dominant: all B) [ Dominant: contralateral
100% [—__Inon-Dominant: all [—_Jnon-Dominant: contralateral
50%
0% Fach
C) [ Dominant: ipsilateral D) [ 1Dominant CZ and FZ
100% [__Inon-Dominant ipsilateral [__Inon-Dominant: CZ and FZ
*
50%
0% =" - 2 = e
Pinch NF1 Lumbrical Ext NF2  Palmar Pinch NF1 Lumbrical Ext NF2  Palmar

Figure 8 Average classification accuracy for dominant vs. non-dominant hand movements, for each electrode group. Graph A: all
electrodes were used, graph B: only contralateral electrodes were used, graph C: only ipsilateral electrodes were used, and graph D:
only CZ and FZ electrodes were used. Error bars refer to the standard deviation of each average value

classification improved significantly when the dominant
hand was used (Table 5). Inspection of the hand opening
data that were identified incorrectly revealed that the
majority of these trials were classified as a non-func-
tional movement 2 (44%) or palmar grasp (31%)
(Table 6). None of the hand extension trials were con-
fused with the pinch grasp and very few were identified
incorrectly as the lateral pinch (2.3%).

Speculatively, the activity of motor planning related to
all-finger extension may be similar to that required for the
non-functional movement 2 or palmar grasp due to their
similarity in the initial posture prior to hand shaping
(i.e. for non-functional 2 or palmar grasp that hand had
to be in finger extension posture first to assume the
desired grasping posture, which is not necessarily the
case with the three remaining grasps). All-finger extension
requires the full extension of the thumb, which is also
required for the non-functional movement 2, and the
palmar grasp is performed from an initial position of
finger extension. In contrast, the pinch grasp requires
thumb flexion. The ubiquitous nature of finger extension
may allow it to be classified as other hand movements,
which also require thumb extension. However, the results
of this study are insufficient to verify this observation.

With respect to the use of correlation for detecting
ERD events, it is a method that has been used for detec-
tion of visual evoked potentials®>*® and, as mentioned
previously, to identify movements from different parts
of the body. Inspection of Figure 6 reveals that the
frequencies that are most strongly correlated with
the hyperbolic tangent function fall within the mu
(9Hz-13 Hz) and beta (19-25 Hz) ranges, which is in
agreement with extensive literature. Additionally, the
decrease in power visible in Figure 5 for a spectral com-
ponent of 23 Hz observed during a single trial of two
finger pinch takes place at approximately 1.7 seconds
prior to the onset of movement, as predicted by
Figure 6. In addition, it is unlikely that the spectral
interpolation used in the work affected the classification
results significantly.

Although the results presented here were obtained
with participants without neurological conditions, the
fact that the movement classification could be per-
formed using information prior to the onset of move-
ment exclusively suggests that it may be possible to
apply the presented work to recordings obtained from
persons with paralysis, including individuals with
spinal cord injury. Indeed, the method presented here

Table 4 Average time prior to movement during which classification takes place for dominant hand movements

Pinch NF1 Lumbrical Extension NF2 Palmar

s(+SD) s(=SD) s(=SD) s(+SD) s(+SD) s(+SD)
Dominant -0.8(+0.7) -0.9(x£0.7) -0.7(x0.9) -0.8(+0.8) -1.0(x0.9) -1.2(x£0.8)
Non-Dominant -0.4(+0.4) -0.6(+0.5) -0.4(+0.7) -0.5(+0.4) -0.6(+1.0) -0.7(+0.9)
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Table 5. Average values and standard deviation of dominant hand classifications of movement using each electrode group with
hand extension was either excluded or included in the experimental data

Electrode Pinch NF1 Lateral NF2 Palmar
Set Pinch (without) NF1 (without) Lateral (without) NF2 (without) Palmar (without)
% % % % % % % % % %
All 741 82.4 64.5 82.8 56.6 81 65.8 81.6 75.9 83.6
+/—SD (8.36) (6.03) (23.5) (9.29) (31.6) (10.3) (20) (9.29) 11 (5.76)
Contralateral 68.1 76.9 51.9 78.9 495 69.8 53 70 57.7 71.8
+/—-SD (9.24) (9.51) (34.5) (12.1) (32.4) (21.7) (28.9) (22.2) (31.1) (22.5)
Ipsilateral 67.9 76.9 48.1 71.9 40.7 71.2 36.2 69.2 61.7 72.7
+/—SD (13.3) (8.27) (37.3) (23.2) (36.4) (22.5) (35.5) (30) (26.7) (21.6)
CZand FZ 65.5% 69.2 50.1 72.6 341 66.9 431 69.6 62.2 77.3
+/—SD (8.46) (20.4) (34. 1) (12.4) (34.6) (21.5) (32.1) (12.2) (28.6) (5.71)

should be tested with neurological populations. It is
likely that the techniques will require modifications to
accommodate the changes observed after the voluntary
motor function is affected (e.g., cortical changes and a
potential change of handedness).

Conclusion

The method described here is able to classify at least
three of the six hand movements measured for every par-
ticipant enrolled in this study with accuracies between
65% and 85% using either the dominant or non-domi-
nant hand. Furthermore, since the EEG data used for
movement classification was limited to only pre-motor
activity, the proposed method is able to both differen-
tiate and predict the hand movement that will be per-
formed with reasonable accuracy. Accordingly, our
results suggest that different hand movements are corre-
lated to distinct features of the EEG.

The averaged classification accuracy for this group of
participants did not change significantly when the elec-
trodes used were limited to either the contralateral, ipsi-
lateral, or CZ and FZ electrodes during dominant hand
movements. Individually, however, the results reveal a
spatial pattern of electrodes unique to both the individ-
ual and the movement performed. Therefore, if this
system were to be implemented using the least possible
number of electrodes, an initial study to evaluate the
effectiveness of each electrode group in classifying the
desired hand movement would be required.

Four of the 15 participants repeated the experiment
using their non-dominant hand; a comparison between

Table 6 Percentage of incorrect classifications of finger
extension (hand opening) classified as one of the remaining five
hand movements

Pinch NF1 Lateral Extension NF2 Palmar
Incorrect 0% 22% 2.3% 0% 441% 31.4%
classification
of finger
extension

The Journal of Spinal Cord Medicine 2017 voL. 40 NO. 6

the results of both experiments revealed no significant
difference in the average classification accuracy of the
movements when performed with either the dominant
or non-dominant hand. However, the small sample
size for the non-dominant hand experiment makes it
difficult to draw any relevant conclusion regarding the
proposed methods ability to classify non-dominant
hand movements. Additional studies in which more
participants complete both the dominant and non-
dominant hand experiments multiple times across
several sessions are warranted.

The results of this study should be viewed as an
exploratory report of potential EEG features effective
for classification of specific hand movements towards
the development of an online movement classification
method. They will provide initial boundaries for this
challenge and hopefully facilitate the development of a
BCI able to detect different intended hand grasps in
real-time for motor rehabilitation applications.
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