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ABSTRACT

While many approaches have been proposed to identify the signal onset in EMG recordings, there is no
standardized method for performing this task. Here, we propose to use a change-point detection proce-
dure based on singular spectrum analysis to determine the onset of EMG signals. This method is suitable
for automated real-time implementation, can be applied directly to the raw signal, and does not require
any prior knowledge of the EMG signal’s properties. The algorithm proposed by Moskvina and Zhigljavsky
(2003) was applied to EMG segments recorded from wrist and trunk muscles. Wrist EMG data was col-
lected from 9 Parkinson’s disease patients with and without tremor, while trunk EMG data was collected
from 13 healthy able-bodied individuals. Along with the change-point detection analysis, two threshold-
based onset detection methods were applied, as well as visual estimates of the EMG onset by trained
practitioners. In the case of wrist EMG data without tremor, the change-point analysis showed compara-
ble or superior frequency and quality of detection results, as compared to other automatic detection
methods. In the case of wrist EMG data with tremor and trunk EMG data, performance suffered because
other changes occurring in these signals caused larger changes in the detection statistic than the changes
caused by the initial muscle activation, suggesting that additional criteria are needed to identify the onset
from the detection statistic other than its magnitude alone. Once this issue is resolved, change-point
detection should provide an effective EMG-onset detection method suitable for automated real-time

implementation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Detecting the onset of muscle contraction from an electromyo-
graphic (EMG) signal is an important task in several types of appli-
cations. It is a marker for the start of active control of the muscle
(Stylianou et al., 2003; Staude et al., 2001), and as such is useful
when measuring performance in reaction time experiments with
external stimulus (Staude et al., 2001; Van Boxtel et al., 1993), or
for alignment of movement-related potentials in the electroen-
cephalogram (EEG) in neurology and psychophysiological applica-
tions (Van Boxtel et al., 1993). The detection of EMG-onset also has
an important role to play in the context of EMG-controlled neuro-
prostheses (Parker et al., 2004). Current approaches for EMG-onset
detection can be divided into two categories: visual (Hodges et al.,
2001; Urquhart et al, 2005) and algorithm-based detection
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(Staude et al., 2001; Morey-Klapsing et al., 2004). The visual
method is subjective, dependent on the experience of the person
performing the EMG-onset detection (Micera et al., 2001), and can-
not be automated. To overcome these shortcomings, numerous on-
set detection algorithms have been proposed, but there is no
standardized method for EMG-onset detection (Hodges and Bui,
1996).

A change-point detection problem is one in which the goal is to
identify abrupt changes in the statistical properties of a signal,
which occur at unknown instants (Brodsky and Darkhovsky,
2000; Basseville and Nikiforov, 1993). These changes are of interest
because they are indicative of qualitative transitions in the data
generation mechanism (DGM) underlying the signal. In the case
of an EMG signal, the onset of muscle activity would constitute
such a transition, and the goal of the present study is therefore
to apply change-point analysis techniques to the EMG-onset detec-
tion problem. In particular, we use a change-point detection tech-
nique based on singular spectrum analysis (SSA). The approach
that we are investigating is non-parametric, fast, requires no prior
knowledge of the properties of the EMG signal, and therefore can
be automated and applied in real-time to raw EMG recordings.
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These features make it particularly attractive for EMG-controlled
prosthetic and neuroprosthetic applications. Previous applications
of change-point detection algorithms to biological data include the
segmentation of EEG data (Wendling et al., 1997; Brodsky et al.,
1999; Kaplan et al., 2005) and the analysis of subthalamic nuclei
(STN) recordings in patients with Parkinson’s disease (Cassidy
et al., 2002).

Because of the lack of a standardized methodology for identify-
ing EMG-onset, we compare the results of our proposed algorithm
with several other methods. The first of these methods consists of
visual onset detection by several experts in EMG analysis; this ap-
proach is taken as the gold standard for the purposes of this study.
The other methods are algorithm-based: Hodges and Bui’s method
(Hodges and Bui, 1996) (an example of a threshold-based ap-
proach) and Donoho’s wavelet-based denoising (Donoho, 1995)
followed by the Hodges and Bui algorithm.

2. Theory

In this section we outline the SSA-based change-point detection
algorithm, which was developed by Moskvina and Zhigljavsky
(2003). SSA functions by applying singular value decomposition
(SVD) to a “trajectory” matrix. This decomposition computes the
eigenvectors of the lag-covariance matrix (i.e., the trajectory ma-
trix multiplied by its transpose), and indicates which ones best re-
flect underlying structure in the data and which ones reflect mostly
noise. The SSA-based change-point algorithm applies SSA to a win-
dowed portion of the signal, and describes the structure of the win-
dowed portion of the signal as an L-dimensional subspace (L > 1).
If the signal structure does not change further along the signal,
then the vectors of the trajectory matrix further along will stay
close to this subspace. However, if the structure changes further
along, it will not be well described by the computed subspace,
and the distance between this subspace and the new trajectory
vectors will increase. This increase will signal the change.

To describe the algorithm mathematically, let x4, X, ..., Xy be a
time series, where N is large. Choose a window width m and the lag
parameter M, such that M < m/2. For our implementation we have
used M=m/2 and used even window size m. Set K=m — M+ 1.
Then for eachn=0, 1,...,N—m — M, take an interval of the time
series [n+1, n+m] and define the M x K trajectory matrix X, as
follows:

Xnt1 Xn+2 Xnik

Xn+2 Xn+3 Xn+K+1
Xy =

XneM  XniM+1 Xntm

This procedure is Takens’ embedding (Takens, 1981) of the time
series between n+1 and n + m.
For eachn=0,1,..,N—m — M:

(1) Compute the lag-covariance matrix R, = X, * X.. R, has the
size M x M.

(2) Determine the M eigenvalues and eigenvectors of R, and sort
the eigenvalues in decreasing order. Eigenvectors will have
the size M x 1.

(3) Compute the sum of the eigenvalues and the percentage of
this sum that each eigenvalue contributes. The greater this
percentage, the larger is the contribution of the eigenvector
corresponding to the eigenvalue to the structure of the data.

(4) Select the number of eigenvectors to use for change-point
detection. For change-point analysis, it was found that it
works best to select a group of eigenvectors that represent
most of the signal. The number of eigenvectors in this group
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is defined as L, and the choice of L remains fixed for all the X,
computed from the signal.

Pick two test interval parameters, p and q (both greater than
0), and define a test matrix T on an interval [n+p+1,
n+q+M-1]:

Xnip+1 Xnip+2 Xnip+3 Xn+q

Xnip+2  Xnipi3 Xnip+4 Xn+q+1
T, =

Xnip+M  XnipiM+1  XnipiM+1 Xn+q+M-1

The only requirement is that the interval defined by the
choice of p and g creates a test matrix that includes at least
one column of signal values different from the trajectory ma-
trix columns. Test matrix has the size M x (q — p). We have
used the choicesp=K=m - M+ 1and q=m+ 1 in our imple-
mentation, so that the test interval includes M — 1 points
from those used to construct the trajectory matrix and M
new points to construct M test vectors.

Compute the detection statistic D,(T,), which is the sum of
squared Euclidean distances between the vectors of the test
matrix T and L chosen eigenvectors of the lag-covariance
matrix Ry:

b= > (1) - (1) o),
J=p+1

where TJ(.") are the vectors constituting the test matrix T,,, and

U is a matrix consisting of the L eigenvectors of R,. The in-

crease of the value of this statistic signals that the change

has occurred.

(7) To find more precise locations of change-points, a cumula-

tive sum (CUSUM) statistic is helpful. The CUSUM statistic
is computed forn=0... N — m — M (Moskvina and Zhigljav-
sky, 2003; Moskvina, 2001) as follows:

Wo = 5o,

Wp.q = max [0., Wh + Spet — Sn— 1/(3\/I\W)]~

Here, S;, = Dy/V,.. v, is an estimator of the normalized sum of
squared distances D, at time intervals at which the hypothe-
sis of no change can be accepted. v, is effectively a variance of
noise in the signal (Moskvina and Zhigljavsky, 2003). It was
recommended by the original authors of the algorithm to
use v, = Di(Xy), where k is the largest value of j < n, so that
the hypothesis of no change could be accepted in the interval
[j+1, j+m] (Moskvina, 2001). This, however, is somewhat
ambiguous, since we do not know precisely the part of the
signal where the changes start occurring. We can only expect
that there should be no change at the very start of the signal.
In the current study, we therefore use z, = D,(X,) for n <m/2
and v, = Dy,j2(Xm/2) for n > m/2. This assumes that there is no
change for n<m/2 (for the first half of the first window),
since points that are used for the very first test matrix begin
at m/2+1 (because of our choice of p=m-M+1 and
M =m/2), and thus may start contributing to the change of
D,, statistic. This is a reasonable assumption for the applica-
tion of EMG-onset detection since there is always at least a
short rest period before the movement-related EMG event
occurs. The term 1/(3\/M"(q —p)) is a small non-negative
constant used to shift the CUSUM statistic downwards in case
of the null hypothesis of no change occurring; its form has to
do with the statistical distribution properties of the squared
distances functions (Moskvina, 2001; Moskvina and Zhigljav-
sky, 2003).
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The change-point estimate is found by first comparing W, to a
threshold, then finding the first point at which W,, has a non-zero
value before reaching this threshold. In the current application,
however, it is likely that there will be multiple changes detected
in the signal. One possible way to decide which changes are most
important is based on the relative height of peaks corresponding
to the changes in the detection statistics. Our hypothesis here is
that the largest change in the EMG signal detected by the SSA-
based change-point detection algorithm will correspond closely
to the movement onset. Therefore, in what follows, a threshold
is not used; rather, the onset is defined as the first point with
a non-zero value before the CUSUM statistic reaches its
maximum.

3. Methods
3.1. Data acquisition

The proposed change-point detection algorithm was tested
using existing EMG data from two different previous experiments.
The first consisted of a wrist extension task, whereas the second in-
volved recording trunk muscle activity during sitting.

3.1.1. Wrist extension experiments

These experiments were conducted at the Toronto Western
Hospital, according to the experimental protocol described in
Paradiso et al. (2003). Nine individuals with Parkinson’s disease
participated in wrist extension experiments during which EMG
was recorded from the extensor carpi radialis and flexor carpi radi-
alis muscles, using round disposable surface electrodes, placed
approximately 3 cm apart over the skin overlying these muscles.
The ground electrode was placed on the bone, to the side of the
wrist. Skin was prepared with alcohol wipes prior to electrodes
placement. SynAmp amplifiers (NeuroScan Laboratories, USA)
were used to amplify the raw EMG signals. The sampling rate of
the data acquisition system was 1 kHz. The EMG signals were
band-pass filtered between 30 and 500 Hz.

Participants were seated in an armchair in front of a computer
monitor. The EMG activity was first recorded at rest for 1-2 min.
Participants were then asked to perform wrist extension tasks fol-
lowed by passive wrist flexions (i.e., the hand dropped due to grav-
ity after the extension was completed) with one arm/hand. They
were asked to perform two types of tasks:

o Internally triggered task (i.e., a participant decided when to initi-
ate a movement) where participants had to perform wrist exten-
sions every 5-10 s. The sequence of movements was self-paced
and typically lasted between 10 and 15 min.

e Externally triggered task where participants had to perform wrist
extensions when prompted by a computer program. The exter-
nally triggered tasks were recorded until about 40 wrist exten-
sions were performed.

Both externally and internally triggered tasks were first per-
formed by the participants after the overnight withdrawal of dopa-
mine medication, then the usual dose of medication was
administered and both tasks were performed again (Paradiso
et al., 2003). The experimental procedures used in this study were
approved by the local ethics committee.

The EMG recordings obtained during these experiments were
segmented into 6 s long intervals (6000 points), each of which con-
tained an EMG event. The actual onset of EMG activity occurred be-
tween 3000 and 4000 ms in all segments. All extracted wrist EMG
segments were manually checked to ensure that there was no loss

of EMG signal, and that there was an increased activity due to
movement.

3.1.2. Trunk muscles involved in sitting

Thirteen healthy, able-bodied male subjects participated in a
perturbed sitting study (Masani et al., 2009; Thrasher et al., ac-
cepted for publication). They were asked to sit on a special appara-
tus and to wear a harness. External perturbations were applied
manually in different directions by a researcher using a rope at-
tached to the harness in series with a force transducer. There were
eight perturbation directions, at increments of 45 degrees.

There were a total of 40 perturbations for each subject (5 sets of
8 directions each). Perturbations in different directions were given
in random order within each set, so that the subject was not pulled
consecutively in the same direction to prevent fatigue and antici-
pation. During each perturbation, surface EMG measurements
were recorded using disposable silver-silver chloride surface
EMG electrodes with a diameter of 10 mm and a distance of
18 mm between them. Each electrode was connected to a pream-
plifier before connecting to a Bortec AMT-8 EMG system. The
EMG signals were sampled at 2 kHz and band-pass filtered be-
tween 10 and 1000 Hz. Two EMG systems were used during the
experiments for a total of 16 channels of EMG recording. Surface
electrodes were placed bilaterally on the skin above the following
muscles: rectus abdominis (RA) — 3 cm lateral to umbilicus, aligned
vertically; external obliques (EO) - 15 cm lateral to umbilicus,
aligned 45 degrees to the vertical, internal obliques (I0) - midway
between ASIS and symphasis pubis, above the inguinal ligament,
aligned 45 degrees to the vertical; thoracic erector spinae (T9) -
5 cm lateral to the T9 spinous process, aligned vertically; lumbar
erector spinae (L3) - 3 cm lateral to L3 spinous process, aligned
vertically; latissimus dorsi (LD) - lateral to T9 spinous process,
over the muscle belly; sternocleidomastoid (SM) - 1/3 the distance
from the sternal notch to the mastoid process at the distal end
overlying the muscle belly; and splenius capitis (SC) - over the
C4-C5 level, aligned vertically. The reference ground was placed
over the clavicle. Illustrations of this setup can be found in Masani
et al. (2009). The experimental procedures used in this study were
approved by the local ethics committee.

The datasets collected from these experiments were subdivided
into 4 s long segments (8000 points). The muscle activation event
occurred about 1-1.5 s after the start of many but not all of the
segments. No additional segmentation was required for these
signals.

The change-point detection method did not require any addi-
tional processing of the signals prior to the application of the
method.

3.2. Implementation of EMG-onset detection methods

The SSA-based change-point algorithm was implemented with
the parameters described in the Section 2 set to the following val-
ues: m=100, M=50, p=m—-M+1=51, and g=m+1=101. The
window length m =100 was a reasonable choice since the main
frequencies of the EMG signal were in the range of 30-500 Hz, so
their corresponding periods were at least twice shorter than the
chosen window length and thus were not affected by windowing.
The value of L, the number of eigenvectors retained after the
decomposition, was chosen on a case-by-case basis for each data
segment, as follows: the trajectory matrix X, (corresponding to
the first window in the segment) was constructed and SSA-decom-
posed. L was defined as the number of eigenvectors with eigen-
values greater than 5% of the total sum of eigenvalues of the
matrix XoX?, and was then kept constant for the whole data seg-
ment. In practice, this process resulted in values of L ranging from
1 to 8.
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The onset detection methods used for comparison were: (1) vi-
sual detection by three specialists in EMG processing, (2) Hodges
and Bui algorithm, and (3) Donoho’s wavelet-based denoising fol-
lowed by Hodges and Bui algorithm.

Before visual detection and application of the Hodges and Bui
algorithm application, the signals were band-pass filtered between
30 and 200 Hz and then rectified. Kaiser window FIR filters were
used, and applied in a zero-phase filtering manner, to ensure that
there was no phase shift in the filtered signals. The Hodges and
Bui algorithm was implemented using a 50 ms sliding window.
This window was moved along the rectified EMG signal one sample
at a time and the mean of values within this window was com-
puted. If the mean of the values of the signal in this window ex-
ceeded the threshold, then the first point of the window was
called the onset of movement (Hodges and Bui, 1996). To compute
the threshold for the onset detection for externally triggered wrist
movements, the section of the signal 500 ms prior to the trigger
event was subdivided into five 100 ms portions. For each of these
portions a mean was computed and the median of five mean values
was taken as the mean used in the threshold computation. The
standard deviation of the 100 ms portion with the median mean
value was also used in this threshold calculation. The threshold
was then defined as the mean plus three standard deviations calcu-
lated above. The 50 ms window started from right after each trig-
ger event and was advanced by one sample for 2 s (2000 samples)
until the movement onset was found. For internally triggered wrist
movements and trunk muscles a similar approach to the threshold
computation was used, except that in the trunk EMG segments the

region which was further subdivided for threshold computation
was between 500 and 1000 ms from the segment’s start and in
the internally triggered signals it was the region between 2500
to 3000 ms of the 6000 ms segment (same as in externally trig-
gered EMG signals). The 50 ms window started sliding from the
beginning of the EMG segment and was advanced by one sample
until a movement onset was found. In all cases, after the onsets
were determined, they were visually checked to make sure that
the calculated locations made sense.

For the wavelet-based method, the raw EMG signals were full-
wave rectified. The denoising procedure described in Donoho
(1995) was then applied, using the first 500 ms of each EMG data
segment to estimate the amount of noise in the signal and using
a Haar wavelet (Boggess and Narcowich, 2001) with 14 levels of
decomposition. After the denoising, the Hodges and Bui method
was applied to the denoised signals in the same manner as de-
scribed above to obtain the EMG-onset estimates. After the onsets
were determined, they were visually inspected to make sure that
the calculated locations made sense.

4. Results
4.1. Sample onset detection in wrist and trunk muscle EMG
A typical onset detection in the wrist muscle EMG is shown in

Fig. 1. Both detection statistics show low values for the portion
of the signal when there is no change and a large increase in their

Original EMG signal
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Fig. 1. Sample detection results for wrist muscle EMG. (a) Original EMG signal, (b) and (c) change detection statistics. Circle marker shows the computed EMG-onset.
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values when a change occurs due to muscle activation. After the in-
creased muscle activity is over, the detection statistics fall off to
the low values again. The onset shown in the plots is computed
from the CUSUM statistic. The time of the peak value of this
statistic for each EMG segment is taken and the first location where
the statistic is equal to zero preceding the peak time is searched
for. This is the value defined as onset. The detection of onsets in
most of the analyzed wrist EMG segments was reasonably clean,
because wrist EMG has a fairly good signal to noise ratio (SNR).
Although the changes in the baseline fluctuation are not ignored,
which can be seen in the small peaks of the detection statistics,
overall they are significantly smaller than the change due to mus-
cle activity increase.

A sample onset detection in a trunk muscle signal is shown in
Fig. 2. The change-point analysis statistics computed from the
trunk muscles EMG produce many more peaks than the corre-
sponding statistics from wrist muscles. This is due to the much
noisier nature of the recordings from the trunk muscles, which
have a lower SNR. As a result, misdetections of onsets by the
change-point analysis become more common, as do cases in which
change-point analysis cannot detect relevant onset at all.

4.2. Frequency of onset detection by different methods

4.2.1. Wrist EMG

The frequency of onset detection was assessed for every EMG
experiment by counting the number of detected onsets in the
vicinity of the expected muscle activation time out of the total
number of segments in which detection was attempted. For the

wrist EMG signals the expected onset location was between 3000
and 4000 ms. In some cases there was some EMG activity greater
than the baseline level but smaller than the main muscle activation
event, leading to onset detection between 2800 and 3000 ms. Such
detections were also counted as successful. The histogram of calcu-
lated onset detection frequencies for wrist muscles based on 48
datasets are presented in Fig. 3. Frequency of the onset detection
did not provide an indication of correctness or precision of the esti-
mates, but rather showed how often the detection could not be
achieved.

Overall, the frequency of detection for the change-point method
was comparable and often higher than the detection frequency of
the threshold-based methods. In most cases the frequency of onset
detection exceeded 87.5%. It is, however, notable that all the in-
stances in Fig. 3 when change-point detection method performed
worse than others relate to the recordings from the same partici-
pant (coded AAA4) for whose files the onset detection frequency
was 14-48%. This is because this participant had tremor, and thus
the regular wrist muscles EMG was contaminated by tremor-re-
lated spikes. This case illustrates the fact that the change-point
detection algorithm will detect any change in the underlying pro-
cess, not only EMG-onset, such that the presence of tremor or other
interfering events will hamper performance. Fig. 4 shows a sample
onset detection in the EMG with tremor.

The top plot in Fig. 4 shows the raw signal, where the muscle
activation is between 3000 and 4000 ms, and other peaks are due
to tremor. When the signal is filtered from 30 to 200 Hz (second
plot), these peaks are removed, thus in this case the direct applica-
tion of Hodges & Bui algorithm yields the best results. Denoising

Original EMG signal
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Fig. 2. Sample detection results for trunk muscles EMG. (a) Original EMG signal, (b) and (c) change detection statistics. Circle marker shows the computed EMG-onset.
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Fig. 4. Detection of onset in EMG signal contaminated by tremor.

(third plot) does not eliminate the tremor-related peaks, but Hod-
ges & Bui algorithm applied to a denoised signal still makes an esti-
mate in the expected time range (at least between 3000 and
4000 ms). The change-point algorithm detects all the changes
promptly, both those due to tremor and due to movement onset,
but the criterion that the change due to movement is the largest
of these changes frequently fails. To maximize the detection of
EMG onsets in the signal with tremor, filtering may thus be
unavoidable. Alternatively, criteria more sophisticated than choos-
ing the change event with the largest amplitude may have to be
investigated.

4.2.2. Trunk muscles

Computing the frequency of onset detection for the trunk mus-
cles EMG is more challenging since not all the trunk muscles were
contracted during the perturbed sitting, hence they did not neces-
sarily produce movement-related activations. Therefore, the fre-
quency of onset detection was found only among the signals for

which the presence of the muscle activation event was confirmed
with the assistance of visual detection experts. Because of a large
number of trunk muscle recordings (520 data files), the onset
detection frequency was only evaluated for 16 representative data
files collected from two experimental subjects for which EMG-on-
set were visually estimated. The results are shown in the histogram
in Fig. 5.

It is notable that although the onset detection for change-point
analysis was reasonably consistent for Subject 1 recordings, the
frequencies of detection for Subject 2 were rather low. The nature
of the problem was similar to the tremor case described in the pre-
vious section: there were multiple changes in the signal segments,
sometimes due to multiple muscle activations, sometimes due to
some additional events, and the change-point detection statistic
increase corresponding to the EMG-onset was in many cases smal-
ler than such an increase due to other activity. For example, in a
noisy signal, extreme spikes due to outlier values generate peaks
in detection statistics, which can be bigger than the other changes
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Fig. 5. Histogram of % successful onset detection in trunk EMG for different computer methods.
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Fig. 6. An example of onset misdetection by the change-point analysis algorithm in trunk EMG.

in the signal structure (Moskvina and Zhigljavsky, 2003). An exam-
ple of when a misdetection of onset occurred is shown in Fig. 6.
In this case one can observe the increased activity of the muscle
around 1500 ms from the start of the data segment; this is evident
in all the shown plots - on the raw, filtered and denoised signals. In
fact, the CUSUM statistic also shows its first large peak around this
time as well. This is a location selected by visual estimators as the
EMG-onset. However, one can also observe a larger activity around
2000 ms from the start of the segment (again reasonably visible on
raw, filtered and denoised signals). This activity corresponds to the
largest peak on the CUSUM statistic plot and it is thus selected as

the EMG-onset by the change-point detection algorithm, which
disagrees with the visual estimates.

4.3. Quality of onset detection by different methods

4.3.1. Wrist muscles

For the datasets for which visual estimates of EMG-onset were
collected it was possible to assess the quality of the computer
methods’ onset calculations. This was done to ensure that the
change-point detection method is at least as accurate as the other
tested computer methods for the purpose of EMG-onset detection.
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The visual estimates of onsets of wrist muscle activities were made
by 3 evaluators, trained in EMG signal processing, for 9 datasets re-
corded from different individuals. In these datasets, the segments
for which at least one of the computer methods was not successful
were removed from the quality calculation. This allowed making
sure that the quality of the computer methods is assessed over
the same segments.

To evaluate the quality of the estimates two methods were
used. The first one is to compute the average absolute differences
between the three visual estimates and each of the computer esti-
mates in all used segments. The average absolute differences with-
in the same dataset can then be compared to determine if they are
significantly bigger or smaller depending on the chosen computer
method. A Lilliefors test for normality was applied, and in many
cases the test showed that distributions of these differences were
not normal, thus regular parametric methods such as ANOVA could
not be applied. Therefore, to perform the analysis of distributions
of average absolute differences, the Kruskal-Wallis non-paramet-
ric test was applied with a 5% significance level (Wackerly et al.,
2002). The Kruskal-Wallis test was followed by a multiple compar-
isons test, which provided information on whether the sets of aver-
age absolute differences for computer methods were significantly
different from each other pairwise. The summary of computer
detection quality measurements as average absolute differences
between visual and computer estimates is shown in Table 1.

The median ranks in Table 1 show whether the average absolute
differences in visual and computer estimates are significantly dif-
ferent for different computer methods (the non-parametric statis-
tical methods use the rank of a given measurement in the ordered
list of measured values instead of the actual value of the measure-

Table 1

Quality of onset detection assessed by median ranks of average absolute differences
between visual estimates and computer methods in wrist EMG signals. The
description column shows the coded participant ID (i.e., AAA1). All the recordings
whose results are presented in this table were externally triggered and were recorded
off medication (OFFMED) or on medication (ON). Kruskal-Wallis test was used with
significance level of 5%.

Description Number Median ranks * standard error
i i Change- Hodges Denoising + Hodges
point and Bui and Bui
analysis
AAA1 OFFMED 42 504 +5.7 69.8+5.7 74.7%5.7
AAA2 OFFMED 32 444 +49 67.5+49 33.6x49
AAA3 OFFMED 43 69.1£5.7 46.6+57 79.3+5.7
AAA4 OFFMED 11 16.0+2.9 11.5+29 235+29
AAA5 ONMED 42 70.0 £5.6 56.8+5.6 63.8+5.6
AAA6 OFFMED 40 59.9+5.5 495+55 721+55
AAA7 OFFMED 38 55.6+5.4 48.0+54 68.8+54
AAA8 OFFMED 20 349+39 314+39 252+39
AAA9 OFFMED 37 37.4+53 68.0+53 62653

Table 2

ment, such that we can only make conclusions about the median of
the set of values, not the mean; therefore, the outputs of the Krus-
kal-Wallis and multiple comparison tests are median ranks of
average absolute differences). Smaller median ranks correspond
to smaller detection error relative to visual estimates. It is notable
that in two recordings analyzed in this way (AAA1 and AAA9) the
change-point detection method was superior to other methods, for
six files it was not statistically different from other methods, and
for one file (AAA3), it was statistically inferior to one computer
method and comparable to the other one.

The second way to compute the detection quality is to compute
how well the visual detection estimates correlate with the results
produced by the computer tests. This is achieved by evaluating the
Spearman rank coefficient, which is a non-parametric method to
test for correlation between two ranked variables (Wackerly
et al.,, 2002). To apply the method, the mean value of three visual
estimates for each processed segment was computed. Then the
Spearman rank coefficient was evaluated between these means
estimates and the sets of estimates for each of the computer algo-
rithms. A large Spearman coefficient indicates closer correlation
between the two series. The Spearman’s rank correlation statistical
test computation was also used to obtain p-values, where a smaller
p-value indicates that it is more likely that the correlation between
the two tested sets is non-zero. The results of Spearman coeffi-
cients calculations are presented in Table 2.

Overall, according to Table 2, the Spearman rank coefficient is
showing a similar assessment of detection quality than the average
absolute differences comparison. For AAA1 and AAA9, the correla-
tions for the change-points analysis are the highest of the com-
puter methods. For AAA2, AAA3, AAA4 and AAA7, the change-
point analysis method has the second highest correlation coeffi-
cient and for AAA8 the lowest. These quality evaluations are con-
sistent with the median ranks in Table 1, although the mean
rank differences among the computer methods for most files were
not significant. For AAA6 and AAA5, the Spearman coefficient re-
sults and mean rank results disagree, but a perfect match was
not expected since correlation and relative size of discrepancies
between visual and computer onsets are two fairly different quan-
tities. However, because there are no error bounds on the Spear-
man coefficients, the median ranks comparison is a more reliable
method to assess the detection quality

4.4. Trunk muscles

The quality of onset detection in trunk EMG signals was as-
sessed by the same methods as those used in wrist EMG: compu-
tation of average absolute differences between visual and
computer estimates and correlation between visual and computer
estimates. The visual estimates of onsets of trunk muscle activities

Quality of onset detection assessed by spearman rank coefficients between visual estimates and computer methods in wrist EMG signals. The description column shows the coded
participant ID (i.e., AAA1). All the recordings whose results are presented in this table were externally triggered and were recorded off medication (OFFMED) or on medication

(ON).

Description Change-point analysis Hodges and Bui Denoising + Hodges and Bui

Spearman coefficient p-Value Spearman coefficient p-Value Spearman coefficient p-Value
AAA1 OFFMED 0.7198 <<0.001 0.6250 <<0.001 02212 0.154
AAA2 OFFMED 0.9592 <<0.001 0.9465 <<0.001 0.9709 <<0.001
AAA3 OFFMED 0.7005 <<0.001 0.9092 <<0.001 0.5700 <<0.001
AAA4 OFFMED 0.7062 0.0152 0.8242 0.00181 -0.1149 0.7365
AAA5 ONMED 0.7586 <<0.001 0.7512 <<0.001 0.6733 <<0.001
AAA6 OFFMED 0.8957 <<0.001 0.8875 <<0.001 0.6204 <<0.001
AAA7 OFFMED 0.9505 <<0.001 0.9800 <<0.001 0.8995 <<0.001
AAA8 OFFMED 0.7424 1.78e—-4 0.8605 <<0.001 0.8060 <<0.001
AAA9 OFFMED 0.7698 <<0.001 -0.2262 0.1782 0.3067 0.0648
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Table 3

Quality of onset detection assessed by median ranks of average absolute differences
between visual estimates and computer methods in trunk EMG signals. Kruskal-
Wallis test was used with significance level of 5%.

Name Number Median ranks + standard error
i i Change-point ~ Hodges Denoising + Hodges
analysis and Bui and Bui
Subject 1 43 87.5+5.7 53.6+5.7 53.9+5.7
Subject 2 64 96.0+6.9 98.2+6.9 953 +6.9

Table 4
Quality of onset detection assessed by spearman rank coefficients between visual
estimates and computer methods in trunk EMG signals.

Name Change-point Hodges and Bui Denoising + Hodges
analysis and Bui
Spearman p-Value Spearman p-Value Spearman p-Value
coefficient coefficient coefficient

Subject 1 0.6238 <<0.001 0.6377 <<0.001 0.7009 <<0.001

Subject 2 0.7841 <<0.001 0.8674 <<0.001 0.9011 <<0.001

were made by 3 evaluators, experts in EMG signal processing, in 16
datasets recorded from two individuals. In these datasets, the seg-
ments for which at least one of the computer methods was not suc-
cessful were removed from the quality calculation. Each particular
dataset had only 16 EMG segments, and not all of these contained a
movement-related activation of muscle. In addition, not all com-
puter methods succeeded for all segments. Therefore, all EMG seg-
ments from 8 datasets for each experiment subject for which there
were three visual and three computer onset estimates were com-
bined for the statistical analysis. Thus, there were a total of 42
EMG segments for Subject 1 and 64 segments for Subject 2 that
were used for the quality calculations. The results for median ranks
comparison and Spearman coefficients are presented in Tables 3
and 4.

The median ranks for the change-point method for Subject 1 are
significantly larger than those for other computer methods, which
mean that it was less accurate than other methods. For Subject 2,
the differences in accuracies of computer methods are not statisti-
cally significant, thus the change-point method is not inferior to
other ones. Results of Spearman rank coefficients are less conclu-
sive since estimated coefficients are rather close to each other for
all computer methods.

5. Discussion

We investigated the application of an SSA-based change-point
detection algorithm to the problem of EMG-onset detection.
Change-point analysis is designed to detect changes in a signal’s
statistical properties, which is exactly the situation that is encoun-
tered in the EMG-onset detection task. Part of the motivation for
our study was that there is currently no accepted gold-standard
method for performing this onset detection, which is not to say
that are no existing methods. Indeed, multiple algorithms have
been proposed, two of which were used as comparison points in
this paper. What sets the change-point-based algorithm investi-
gated here apart from other techniques is that it can be applied di-
rectly to the raw signal (without any filtering or rectifying), does
not require very intensive computations, and does not require a
priori knowledge of the signal’s properties. These features make
it suitable for application in real-time, and therefore attractive
for situations in which this is a requirement, for example EMG-
controlled prostheses or neuroprostheses. Another advantage is

that the SSA-based change-point detection procedure automati-
cally “denoises” the signal, which is important because EMG sig-
nals are frequently complex. For example, signals recorded in the
trunk study, which represent the superposition of activity of many
muscles in the area, have a rather high baseline activity, so the
EMG events due to perturbation do not exceed the baseline by eas-
ily detectable amounts. The denoising ability of the change-point
based algorithm may therefore be very useful. This effect is
achieved during the subspace decomposition step, when eigenvec-
tors that represent noise can be eliminated from the computation
of detection statistics. Fluctuations of the baseline level do not
strongly affect the detection. Another advantage of the technique
is that it can work with fairly short signal segments. This is valu-
able because frequently the pieces of signal that correspond to a
movement phenomena are short, and might not contain enough
points for more advanced computational techniques.

In terms of performance, it was shown in this study that for
wrist EMG muscles, the onsets obtained from the maximum of
the detection statistic in the change-point analysis yielded detec-
tion frequencies and accuracies comparable to the threshold-based
methods (with or without denoising). For the trunk muscle, more
visual estimates are needed to be able to better judge the accuracy
and detection frequency of the change-point method, but for one of
the two individuals for which the visual estimates were obtained,
accuracy and detection frequency were comparable with other
methods.

The main drawback of change-point detection when applied to
EMG processing was its inability to recognize the onset among the
multiple changes present in the signal, which may or may not be
related to muscle activation. Many changes may be detected in a
single data segment, and it is therefore easiest to determine the on-
set when one change is significantly bigger than the others - in this
case this dominant change corresponds to the increase of muscle
activity. This was the case in most of the wrist muscle EMG seg-
ments. However, in the wrist EMG with tremor and in trunk
EMG there were many changes causing similar increases of the
detection statistics. The largest change did not correspond to the
EMG-onset in many cases, so our hypothesis regarding this rela-
tionship did not hold. For example, in the EMG with tremor, the
peaks of the detection statistic due to tremor were comparable in
height and frequently higher than those due to increased muscle
activity, as shown in Fig. 4. In the case of tremor, one could filter
the signal for the purpose of removing the tremor peaks, but part
of the appeal of the change-point analysis approach is its ability
to process raw signals. In the trunk muscle EMG signals there were
either multiple small activations of muscle in a sequence, or multi-
ple activations at different times of the recording. In these cases,
the earliest observed significant change, which corresponded to
the EMG-onset detected by the visual estimators, was in many
cases not the largest of the changes detected by the change-point
analysis algorithm. An example of this is shown in Fig. 4. Unfortu-
nately, the change-point detection does not allow us to classify the
changes by origin; it only finds locations in time where changes
happened. There is therefore a need for better ways to identify
the onset from the change-point detection statistics. These could
include a threshold for the increase of the statistic from the base-
line level, or perhaps finding a region of the statistic where several
significant changes occur in succession. Another possibility is to
check for how long the CUSUM statistic stays above zero or above
some threshold for different peaks. In the wrist EMG the duration
of the common muscle activation due to movement was about
500-600 ms (see Figs. 1 and 4) while spikes due to tremor lasted
for about 100-200 ms (Fig. 4); using temporal information of this
type may provide a better way to determine from the detection
statistic which changes actually correspond to the movement on-
set and which do not. It is likely that if the onset is identified using
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more sophisticated methods such as these, rather than simply
using the maximum of the detection statistic, then the perfor-
mance of the algorithm could be improved. In other words, by
incorporating some additional logic into the algorithm, it could
be customized to a given situation.

A noteworthy limitation to our study is that the visual onset
estimation, which we used as our gold standard, is of course not
perfect. We used real recorded EMG signals for this study, not sim-
ulated ones, such that the true onsets were not known before the
application of the detection methods. Visual estimates are subjec-
tive and dependent on the estimators’ experience. In addition, an
EMG segment may contain features that could be interpreted dif-
ferently by different observers, and therefore affect the onset
detection. For example, a small activity increase (compared to
the baseline) may precede the main increase, casting doubt on
which one corresponds to the actual movement onset. The lack
of precise knowledge regarding the true onset time of course
makes it more difficult to compare the different detection
methods.

We also did not investigate the effects of the change-point algo-
rithm’s parameters in detail, rather opting to choose the parame-
ters based on relatively basic criteria (Vaisman, 2008). Setting
the window size equal to 100 was believed to be a sufficient
(and perhaps superfluous) approximation of the order of the
EMG signal, without interfering with the 30-500 Hz frequencies
of the EMG. The other parameters were in large part chosen to de-
pend on the value of the window size (as outlined in the Section 2
of the article). Note that a larger window size and lag parameter
will create the need for larger matrices and slow down the algo-
rithm. Precisely optimizing this parameter to obtain both speed
and accuracy will be particularly relevant in real-time applications.
Another parameter to consider is the number of eigenvectors used
for the calculation of the detection statistics. In the present imple-
mentation, this number changed for every data segment to include
all eigenvectors whose eigenvalues exceed 5% of the total sum of
eigenvalues. Instead it may be useful to investigate keeping this
number of eigenvectors fixed at some reasonable value, say 5-10,
to ensure that at least a set number were used to compute detec-
tion statistics for all segments. Tuning of other parameters can also
be investigated. For example, by increasing the window length m
to values larger than twice the lag parameter M, some small
changes could be smoothed out, highlighting the larger ones. How-
ever, when there are many changes due to a sequence of small acti-
vations of muscles, as happens in trunk muscles, smoothing out
small changes might not be useful.

6. Conclusion

In this article we investigated the use of a singular spectrum
analysis (SSA) based change-point detection algorithm to detect
an onset of EMG. The advantage of this method is that it can be
fully automated, applied in real-time in prosthetic and neuropros-
thetic applications, and does not require prior knowledge of the
properties of the EMG signal. The only information required is a
segment of the signal before the onset of EMG, since the algorithm
functions by detecting a change. The analysis presented in this pa-
per suggests that the SSA-based change-point detection algorithm
applied using a simple “maximum change event” detection algo-
rithm not only has similar detection capabilities to Hodges and
Bui’s method (Hodges and Bui, 1996) and Donoho’s wavelet-based
denoising (Donoho, 1995) method followed by the Hodges and Bui
algorithm, but additionally has significant benefits in terms of
automated real-time implementation. Furthermore, since the
“maximum change event” detection algorithm is a simplistic way
of applying the SSA-based change-point detection algorithm and

since simple logic could be incorporated into the algorithm to
weed out unwanted events such as tremors, we believe that the
proposed EMG-onset detection algorithm has great potential for
real-time applications involving prostheses and neuroprostheses.
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