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49 points before and 50 points after each detected spike location) using the spatial filter outputs tailored for a given 

pathway.  

The second metric investigated was the ability of the algorithms to reconstruct the firing rate of each pathway. 

Reconstruction of the estimated firing rate was performed using all CAPs generated for the spatiotemporal templates. 

A new time series was created, where the CAP timings were determined using a Poisson process whose average 

firing rate varied between 0 and 60 Hz according to a modulating envelope for each test scenario. The firing rates 

were calculated using the convolution of the estimated spike trains with a Gaussian kernel with a standard deviation 

of 150ms [28]. The Pearson correlation coefficient was used to measure how correlated the original firing rates were 

to the estimated firing rates. 

We further sought to determine the tradeoff between performance and the number of electrode contacts. The 

performance of the algorithms was investigated across different configurations corresponding to 3 rings of 8 contacts 

(3x8), 5 rings of 8 contacts (5x8) and 7 rings of 8 contacts (7x8). The same parameters were used as described in the 

sections above, however for concision this analysis was only conducted at an SNR of -10 dB, which corresponds well 

to expected in-vivo signal quality.  

Lastly, given that our templates were based on all of the CAPs in the training set, we investigated how 

performance might vary if the CAPs used to construct the template had to first be identified through spike detection, 

as would be the case in vivo. Using the DFaDFi case, the normalized root mean square error (NRMSE) was calculated 

between the spatiotemporal template constructed using all CAPs in training set, compared to one constructed using 

the spikes extracted from the time series through spike detection (which may miss some CAPs as well as include 

spurious ones). The 8 contacts in the center ring were averaged for each SNR case (-5, -10, -15, -20, -25 dB) and 

manual thresholding was used to extract spikes . The templates were normalized by their l2
 norms in order to focus on 

shape differences, and the RMSE was calculated. The classification accuracies using these templates were also 

calculated. 

3. Results 

3.1 Classification 

Figure 4 shows the mean classification accuracies from the 5 folds of the cross-validation process, for each of the 
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both our algorithm and the VSR method but our algorithm was able to perform much better as the SNR dropped. The 

mean classification accuracies in this case were 95.8±0.3%, 18.9±19.7%, 56.3±37.7% for our algorithm, the BSF 

method and the VSR method respectively. The ranges of values observed for the three methods were from -

94.9.95.9%, 4.0-57.5%, and 0.1-95.0%, respectively. The mean percentages of missed spikes for the SFAE case were 

0.0±0.1%, 62.3±39.2%, 40.6±44.3% for our algorithm, the BSF method and the VSR method respectively. The range 

of values observed for the three methods was from 0.0-0.4%, 0.0-93.0%, and 0.0-99.5%, respectively. 

3.2 Reconstruction 

Figure 7 shows the mean Pearson correlation coefficients between the original firing rates and the estimated firing 

rates for the different test cases. The mean coefficients over all test cases were 0.832±0.161, 0.421±0.145, 

0.481±0.340 for our algorithm, the BSF method and the VSR method respectively. The range of values observed for 

the three methods was from 0-1.00, -0.103-0.999, and 0-1.00, respectively. Note that the correlation coefficient was 

set to 0 if no spikes were assigned to that class. 

Figure 8 shows an example of the original firing rate of the 3 different neural pathways and the reconstructed firing 

rates predicted by the 3 algorithms in the DFaDFi case. It can be seen in the figure that our algorithm was able to 

capture the firing rates in the 3 different neural pathways more accurately compared to the BSF and VSR methods. 

As the SNR drops our algorithm was still able to capture the firing rate consistently and fairly accurately. These 

figures also reveal that the general shape of the firing rate can be estimated sufficiently even with some 

misclassifications of spikes. Figure 9 shows an example of the predicted firing pattern of each pathway using our 

algorithm for a sub-section of the DFaDFi case.  

3.3 Influence of the number of contacts on performance 

Table II shows the results of the DFaDFi, DFaSFi, SFaDFi, SFaSFi cases for all 3 arrangements, the 3x8 

configuration, 5x8 configuration, and 7x8 configuration for SNR = - 10 dB. This table shows a general trend towards 

decreasing performance as the number of contacts is reduced, but also suggests that the performance of the 

spatiotemporal templates is more robust to decreasing numbers of contacts than the other two algorithms examined.  
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understand how the layout of the contacts and the geometry of the electrode can be selected in order to achieve the 

best trade-off between the complexity of the device and the discriminative performance of the spatiotemporal 

patterns. 

In practice, the need to collect the proposed spatiotemporal templates for the pathways of interest will be a 

disadvantage, but given that the improvement in discrimination is significant this tradeoff does not seem 

unreasonable. For in vivo situations, the spatiotemporal templates could be obtained experimentally through a 

calibration step. For example, in the rat model of the sciatic nerve one could selectively activate the tibial, peroneal 

and sural branches by performing dorsiflexion, plantarflexion and pricking of the heel, respectively, then use 

traditional spike detection to locate spikes that can be averaged to create the template for each neural pathway. In 

humans, the user could be asked to voluntary attempt to contract certain muscles, and/or provided with sensory 

stimuli (e.g. passive joint movement, cutaneous mechanical stimulation, etc.) to elicit activation in certain pathways 

in order to define spatiotemporal templates for all the pathways of interest. These spatiotemporal templates could 

thereafter be used for spike detection and classification to track the firing rates of individual pathways, which could 

then be used as command signals in neuroprostheses. Lastly, if one were to use these spatiotemporal templates in 

practice it would be advisable to base the training set on the natural activity of the pathways of interest, rather than 

direct stimulation. This will ensure the training set is more closely related to the activity that one would observe in 

practice. While the spatiotemporal templates used in this study assumed correct spike detection, the results in Table 3 

suggest that templates based on a threshold-based spike detection process would yield very similar performance up to 

an SNR of approximately -15dB (with template NRMSE on the order of 10-4), thus supporting the feasibility of the 

calibration process described above. Chronic implantation for selective peripheral nerve recordings has been limited 

to date, however this process may be accelerated if the discrimination performance can be improved with novel 

methods such as the one presented here.  

4.1 Limitations 

While the present results provide a proof-of-concept for the integration of the spatial and temporal information, 

further work is warranted to address cases when CAPs overlap causing recordings that consists of activity from 

multiple neural pathways, as well as to validate the method in an in-vivo study.  
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Other aspects that should also be considered are the effects of other types of noise, such as an electromyogram 

signal that may occur during the collection of the peripheral nerve recording, and produce more structured 

interference than the independent white Gaussian noise signals used here. The method must also be investigated in 

nerve models with larger numbers of fascicles, as human nerves can have many more fascicles than the sciatic nerve 

model used here, and pathways that are more centrally located.  

5. Conclusion 

This study has shown that the use of spatiotemporal information improves the ability to discriminate between 

different peripheral neural pathways in various test cases. The spatiotemporal templates allow for robust spike 

detection at low SNRs. Additionally they provide for more reliable discrimination in the DFaDFi, SFaDFi and SFAE 

cases at almost all SNRs compared to the VSR and BSF methods. In the DFaSFi case, they are able to partially 

discriminate the neural pathways (depending on fiber type) but still provide better discrimination than the VSR and 

BSF methods at most SNRs. Discrimination in the SFaSFi case may be possible but will require further development 

beyond the current techniques. These results demonstrate that leveraging both the spatial and temporal variations in 

multi-contact nerve cuff recordings leads to improvements over state-of-the-art methods in peripheral nerve 

recordings. 
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Table 2. Classification accuracies at SNR = -10dB 
DFaDFi Case    

Algorithm 3x8 Configuration 5x8 Configuration 7x8 Configuration 
ST 72.05±1.10 90.39±0.38 92.26±0.14 

BSF 12.30±1.21 14.37±2.67 24.77±2.82 
VSR 27.1±0.79 46.95±0.83 55.51±0.59 

DFaSFi Case    
Algorithm 3x8 Configuration 5x8 Configuration 7x8 Configuration 

ST 47.68±2.83 50.67±0.32 47.89±2.08 
BSF 7.40±2.25 7.05±2.28 7.32±3.14 
VSR 21.17±7.89 31.73±1.73 32.55±0.56 

SFaDFi Case    
Algorithm 3x8 Configuration 5x8 Configuration 7x8 Configuration 

ST 73.63±1.14 90.46±0.50 92.37±0.07 
BSF 12.30±1.07 13.28±1.81 22.37±4.52 
VSR 26.15±0.94 47.58±0.92 55.92±0.88 

SFaSFi Case    
Algorithm 3x8 Configuration 5x8 Configuration 7x8 Configuration 

ST 31.11±1.53 30.68±2.11 31.22±1.48 
BSF 6.82±2.51 7.09±2.43 7.24±2.84 
VSR 12.29±3.69 31.58±1.35 32.66±0.37 

SFAE Case    
Algorithm 3x8 Configuration 5x8 Configuration 7x8 Configuration 

ST 95.69±0.20 95.62±0.00 95.83±0.15 
BSF 13.78±3.67 16.29±6.78 17.77±8.22 
VSR 87.07±5.32 90.48±3.88 90.34±3.19 
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Table 3. Impact of spike detection on template at different noise levels 
Noise level (dB) NRMSE (x10-3) Max  Abs. Error 

(%) 
Number of total 
spikes detected 

Percent of actual 
spikes from detected 

(%) 

Classification 
Accuracy 

(%) 
-5 0.000±0.000 0.00 4000±0.00 100±0.00 92.47±0.00 

-10 0.009±0.003 2.15 3975±49.47 99.63±0.02 92.47±0.00 
-15 0.096±0.025 6.05 3255±567.24 94.66±0.09 92.09±0.10 
-20 0.545±0.147 16.82 1771±808.43 73.74±0.60 80.90±0.76 
-25 1.110±0.314 24.84 820±131.60 50.14±0.19 37.55±0.50 
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Figure 2  
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Figure 4  
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Figure 5 
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