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Context: Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant
conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces;
BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria
that predict neuron utility will assist translation of BMI research to clinical applications.
Findings: Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans
rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a
light-emitting-diode and subsequent reward. Neurons were classified as ‘fast-spiking’, ‘bursting’ or ‘regular-
spiking’ according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were
found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular-spiking
neurons decreased firing rates on average by a factor of 0.73±0.23, demonstrating low utility.
Conclusion/Clinical Relevance: The ability to select neurons with high utility will be important to minimize training
times and maximize information yield in future clinical BMI applications. The highly contrasting utility observed
between fast-spiking and bursting neurons versus regular-spiking neurons allows for the hypothesis to be
advanced that intrinsic electrophysiological properties may be useful criteria that predict neuron utility in BMI
implementation.
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Introduction
One of the main goals of brain-machine interfaces
(BMI) is to improve quality of life by facilitating activi-
ties of daily living for people who experience motor
impairment. BMIs record cortical activity, and trans-
form this information into control signals for external
devices.1–7 For example, there have been impressive
demonstrations of BMI-controlled computer cursors
and robotic arms in people with tetraplegia.2,3

BMIs are often implemented through operant con-
ditioning, whereby firing rates of single cortical
neurons can be volitionally modulated through biofeed-
back.8,9 This paradigm involves the setting of a task rule
that determines when the BMI is triggered. During
training, an association is created when the task rule is
met and rewarded in a timely manner. Learning is

evident when the time required to complete the task is
reduced over repeated presentations. Naturally, the
utility of a neuron in a BMI is predicted by its adapta-
bility to meet the BMI task rule. However, not all
neurons in a BMI contribute to improving control,
while the inclusion of certain neurons can even cause
clear decrements in control.10 Thus, the ability to differ-
entiate between neurons with high and low utility, prior
to their inclusion in a BMI, would be valuable for opti-
mizing the effectiveness/accuracy of BMI control.10,11

Cortical neurons can be classified electrophysiologically
by waveform-width. A bimodal distribution of neuronal
populations, into narrow- and wide-waveforms has been
reported in motor cortex of rats.12,13 Preliminary evidence
indicates that classifying neurons based on waveform-
width alone may predict the utility of a neuron in BMI
implementation, in that narrow-waveform neurons outper-
form wide-waveform neurons.11 However, wide-waveform
neurons make up the majority (∼60–70%) of extracellular
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recordings in the neocortex,14,15 so exclusion of neurons
based on waveform-width alone may be too restrictive.
Interestingly, the firing patterns of these two populations
differ considerably, as narrow-waveform (i.e. fast-spiking)
neurons fire at short repetitive intervals12,14 while wide-
waveform neurons fire either in a clustered pattern
(i.e. bursting) or at long repetitive intervals (i.e. regular-
spiking).14,16 It remains unknown if classifying neurons
based on intrinsic firing patterns, in addition to wave-
form-width, can improve the predictive power of the
neuron selection process prior to BMI implementation.
The objective of this pilot study was to describe the utility
(i.e. ability to meet a task rule) of three types of cortical
neurons (i.e. fast-spiking, bursting, regular-spiking), dif-
ferentiated based on waveform-width and intrinsic firing
patterns, during an operant conditioning BMI protocol
involving up-regulation of neuronal firing rate.

Materials and Methods
Animal Model and Microelectrode Array
An adult Long-Evans rat underwent electrode implan-
tation in the forepaw representation of the motor
cortex (M1). The University of Toronto Animal Care
Committee approved the animal use protocols described
below. The electrode consisted of an array of eight
Parylene-C-insulated tungsten electrodes (2×4 configur-
ation; 500 μm inter-row distance; 250 μm inter-electrode
distance). Each probe had a shaft diameter of 75 μm
with the tips sharpened to 2 μm, resulting in an impe-
dance of ∼0.5 MΩ at 1 kHz (Microprobes for Life
Sciences, Gaithersburg, MD, USA).

Experimental Setup
To perform the operant conditioning experiments, the rat
was placed in a chamber (Med-Associates Inc™,
St. Albans, VT, USA) with food and liquid dispensers pro-
viding chocolate-flavored pellets (Bio-Serv, Flemington,
NJ, USA) and 10% sucrose solution, respectively. A
light-emitting-diode (LED) provided visual feedback.
The chamber components (i.e. dispensers and LED)
were controlled in real-time with custom-made programs
using CBMEX, a MATLAB™ (Mathworks, Natick,
MA, USA) software development kit to read the time-
stamps from the a data acquisition system (Cerebus®,
Blackrock Microsystems, Salt Lake City, UT, USA), and
an Arduino UNO board (Ivrea, Italy).

Spike Sorting, Baseline Recordings and Neuron
Selection
Single neuron activity was recorded and processed with
the data acquisition system. When a single probe of
the electrode array was recording multiple distinct

waveforms, the spikes were sorted and assigned as separ-
ate neurons in real-time. The spike-sorting method was
implemented based on time-amplitude windows, which
were placed manually on the spike waveform trough
and peak.17 Once a neuron was isolated, its firing rate
and interspike interval (ISI) histogram, which describe
neuron firing patterns, were computed from a 5 min
recording (i.e. baseline; Fig. 1a). During this baseline
recording the rat received no feedback (i.e. no auditory
cues or visual feedback), but did receive rewards at
random times to engage the animal. The criteria used
to select a neuron for subsequent experimentation (i.e.
association and up-regulation protocols; see below)
included: 1) a minimum refractory period of 1 ms,18

and 2) a signal-to-noise ratio (SNR) of two or greater.19

BMI Protocols: Association and Up-Regulation
The BMI consisted of separate association and up-regu-
lation protocols (Fig. 1a) to train the brain to control the
brightness of an LED by increasing the firing rate of
single neuron activity. The association protocol involved
a threshold (i.e. 0.5 to 1.5 standard deviations [SD]
above average baseline firing rate), where rewards were
obtained frequently over a 5-min period. The purpose
of the association protocol was to create an association
in the brain between a bright LED (i.e. high firing rate)
and the acquisition of a reward. The association proto-
col was followed by an up-regulation protocol involving
a higher threshold (i.e. 1.5 to 5 SD above average base-
line firing rate), where rewards were obtained infre-
quently to encourage increases in neuron firing rate.
The up-regulation protocol was a maximum of 20
mins in duration or up to 20 rewards, whichever was
reached first.

Each protocol consisted of a sequence of trials, each
involving the same closed-loop paradigm (Fig. 1b). A
trial started with an auditory cue (i.e. 750 ms ‘beep’)
and the activation (i.e. turning ON) of visual feedback
(i.e. LED). M1 neural activity was recorded, sorted
and entered into an algorithm that transformed single
neuron firing rate to the brightness of the LED. Power
input to the LED was regulated to adjust brightness
using pulse-width modulation, reflecting the firing rate
of the neuron. The LED displayed maximum brightness
when the firing rate reached the threshold-crossing
value, and the minimum brightness corresponded to
no neural activity. A reward was provided when firing
rate was maintained above the threshold-crossing
value for at least 1 s. The trial finished when a reward
was dispensed, followed by a 10 s pause for the rat to
retrieve the reward before a new trial started. There
was no time limit to complete a given trial.
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Data Analysis
Neurons were classified post-hoc in two steps. First,
neurons were classified based on waveform-width as
either narrow (290±90 µs) or wide (570±140 µs).15

However, waveform-width classification alone is
unable to differentiate between bursting and regular-
spiking neurons. Hence, a second classification system
was employed. ISI histograms were used to differentiate
bursting and non-bursting neurons. The percentage of
ISIs < 5 ms is greater than 5% for bursting neurons, pro-
ducing a ‘sharp’ peak in the ISI histogram. Conversely,
the percentage of ISIs < 5 ms is less than 5% for non-
bursting (i.e. fast-spiking and regular-spiking) neurons,

producing a ‘broader’ peak in the ISI histogram.15

However, tonic firing rates of up to 800 Hz have been
reported in fast-spiking neurons.14 Thus, ISI histogram
classification alone may not clearly differentiate
between bursting and fast-spiking neurons. To differen-
tiate between all three types of neurons encountered in
the present experiments, both classification systems
were required.

SNR was calculated as: A/(2*SDnoise), where A is the
trough-to-peak voltage (µV) of the waveform averaged
across baseline, and SDnoise is the SD of the residuals
from each waveform after the average has been sub-
tracted.19 Waveform-width was calculated as the

Figure 1 a) Experimental timeline. b) Paradigm of the BMI protocols. A rat was placed in an operant conditioning chamber. M1
neural activity was recorded, sorted and entered into an algorithm that transformed single neuron activity to the brightness of a LED
(i.e. visual feedback). Constant visual feedback was provided to the rat, and a reward was delivered when the firing rate was
maintained above the threshold-crossing value for ≥ 1 s.
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trough-to-peak duration (μs) of the waveform averaged
across baseline. Firing rates (Hz) were calculated over
500 ms bins. Baseline firing rate was calculated as the
average spike count per bin of each neuron divided by
the duration of baseline. ISI histograms were computed
in 1 ms increments, from 0 to 1000 ms. Percentage of ISI
< 5 ms was calculated as the percentage of counts per
interval < 5 ms, from the total number of counts
across 1000 intervals.

To quantify changes in firing rate during the BMI
protocols, a Firing Rate Index (FRI) was calculated as
the average firing rate during the second half of a
given protocol, normalized to the average firing rate of
the first half. In this way, FRI values > 1 indicate
increases in firing rate from the first to the second half
of a protocol, while FRI values ≤ 1 indicate either no
change or decreases in firing rate from the first to the
second half of a protocol.

To quantify changes in the time required to obtain a
reward during the BMI protocols, a Learning Index
(LI) was calculated as the inverse of the average trial
duration during the second half of each protocol nor-
malized to the average trial duration of the first half.
Trials spanning the halfway-crossing point of each pro-
tocol were included in the half for which the majority of
the trial duration took place. In this way, LI values > 1
indicate positive learning (i.e. decreases in trial dur-
ation), with higher values representing greater learning,
while LI values ≤ 1 indicate no positive learning. To
visualize changes in the time required to obtain a
reward during the up-regulation protocol, learning
curves showing the moving average20 across three trials
with 66% overlap were plotted for each neuron.

Data are reported as mean±SD where applicable.

Results
Neuron-Type Classification
Seven neurons were conditioned in the present BMI pro-
tocols (average SNR = 2.99±0.81). Three neurons were
classified as narrow-waveform (Fig. 2a-c, left column;
average waveform-width = 233±33 µs) and four were
classified as wide-waveform (Fig. 2d-g, left column;
average waveform-width = 508±32 µs). Based on the
ISI histogram (Fig. 2, middle column), narrow-wave-
form (i.e. fast-spiking; Fig. 2a-c) neurons had an
average percentage of ISI < 5 ms = 1.67±2.20%
(average baseline firing rate = 4.50±3.31 Hz). Wide-
waveform neurons were further sub-classified into burst-
ing (Fig. 2d-e; average percentage of ISI < 5 ms =
12.45±9.40%; average baseline firing rate = 3.02±1.58
Hz) and regular-spiking (Fig. 2f-g; average percentage

of ISI < 5 ms = 0.05±0.07%; average baseline firing
rate = 0.66±0.23 Hz) neurons.

BMI: Firing Rate Index
During the association protocol (data not shown), when
the threshold was set at a relatively low level, the rat
obtained 17.0±3.6 rewards with fast-spiking neurons,
17.5±9.2 rewards with bursting neurons and 16.0±2.8
rewards with regular-spiking neurons. During this pro-
tocol, FRI values were 1.12±0.07 for fast-spiking
neurons, 0.96±0.22 for bursting neurons and
1.06±0.09 for regular-spiking neurons. During the up-
regulation protocol (Fig. 2, right column), when the
threshold was set at a higher level, 20 rewards were
obtained with all neurons (see tick marks in the upper
portion of each panel in the right column), except for
one regular-spiking neuron which received only 5
rewards within the 20 min time limit (Fig. 2g). During
this protocol, FRI values were 2.72±1.44 for fast-
spiking neurons, 1.77±0.36 for bursting neurons and
0.73±0.23 for regular-spiking neurons.

BMI: Learning Index
During the association protocol (data not shown), LI
values were 1.71±0.73 for fast-spiking neurons,
1.67±0.86 for bursting neurons and 1.32±0.25 for
regular-spiking neurons. Figure 3 shows learning
curves for fast-spiking (left; LI = 13.16±6.91), bursting
(middle; LI = 4.95±2.32) and regular-spiking (right; LI =
0.66±0.67) neurons during the up-regulation protocol.

Discussion
Herein we describe the utility of three types of cortical
neurons (i.e. fast-spiking, bursting and regular-
spiking), differentiated based on waveform-width and
intrinsic firing patterns, during an operant conditioning
BMI protocol involving up-regulation of neuronal firing
rate. During the up-regulation protocol, the firing rate of
fast-spiking and bursting neurons increased by a factor
of 2.43±1.16 (all neurons produced FRI values >
1.49), demonstrating high adaptability to meet the
task rule (i.e. high levels of learning; LI = 9.88±6.74).
In contrast, the firing rate of regular-spiking neurons
decreased on average by a factor of 0.73±0.23 (both
neurons produced FRI values < 0.89), demonstrating
low adaptability to meet the task rule (LI =
0.66±0.67). Such contrasting utility is clearly displayed
in the learning curves (Fig. 3), where all fast-spiking
and bursting neurons showed a progressive reduction
in the time required to earn a reward, resembling an
inverse exponential curve, which is absent for regular-
spiking neurons. These results indicate that, compared
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Figure 2 Waveform-width (left column), interspike interval (ISI) histogram (middle column) and up-regulation protocols (right
column) for each neuron (a-g). The left column of each panel shows the waveform for each neuron, averaged across all neuron firings
during baseline recordings (solid black line; shaded region represents ± SD), and the corresponding waveform-width. The middle
column of each panel shows the ISI histogram for each neuron, and the corresponding percentage of ISI < 5 ms. The right column of
each panel shows firing rate (grey vertical bars; 500 ms increments), threshold (horizontal black line), reward acquisitions (upper tick
marks) and the corresponding firing rate index (FRI) for each neuron during the up-regulation protocol. Vertically dashed lines
represent the division for FRI calculations (see text for details).
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to fast-spiking and bursting neurons, regular-spiking
neurons lack utility in BMI implementation involving
up-regulation of neuronal activity. However, it would
be premature to draw definitive conclusions from these
few observations, suggestive as they are.

A recent paper by Best et al.11 concluded that the utility
of neural ensembles in BMIs may be predicted by spike
waveform-widths alone, in that narrow spiking (i.e.
narrow-waveform) neurons outperform wide spiking (i.e.
wide-waveform) neurons. Our findings are consistent
with this conclusion, in that we found a clear distinction
in utility between fast-spiking and regular-spiking
neurons (i.e. narrow- and wide-waveform, respectively).
However, Best et al. classified waveform-widths after
excluding neurons with baseline firing rates < 1 Hz.
Based on our data, Best et al. were comparing fast-
spiking (i.e. narrow-spiking) and bursting (i.e. wide-
spiking) neurons, since our regular-spiking neurons had
baseline firing rates < 1 Hz. Indeed, our data also indicate
that there may be a division in utility between fast-spiking
(LI = 13.16±6.91) and bursting (LI = 4.95±2.32)
neurons. However, the 1 Hz cut-off alone may be too
restrictive for predicting utility in BMI implementation
since presently, this criteria would have excluded a fast-
spiking neuron with high utility (Fig 2b; baseline firing
rate = 0.69±0.96). The present data demonstrate that a
two-step process involving first differentiation between
narrow- and wide-waveform neurons, whereby narrow-
waveform neurons are always included, followed by
further differentiation of wide-waveform neurons based
on intrinsic firing patterns (e.g. ISI or baseline firing
rates) may predict utility more reliably than waveform-
width classification alone.

Limitations
The possibility that the observed firing rate modulation
with fast-spiking and bursting neurons during the up-

regulation protocol was the result of general excitation
due to auditory cues (e.g. ‘beep’), visual feedback (e.g.
bright LED) or the simple prospect of a reward
cannot be excluded. However, it is likely that the
observed firing rate modulation was instead due to voli-
tional control of the BMI. During the association proto-
col, the rat received roughly the same number of rewards
(i.e. auditory cues and maximum LED brightness;
16.86±4.49 rewards) as during the up-regulation proto-
col (17.86±5.67 rewards), but at a relatively greater rate
(3.25±0.83 rewards/min during association versus
1.67±0.73 rewards/min during up-regulation) due to
the lower more readily achievable threshold of the
association protocol. If modulation of firing rate was
the result of the rat having been exposed to auditory
cues, visual feedback or due to the simple prospect of
a reward, firing rates would be expected to increase simi-
larly or possibly to a greater extent during the associ-
ation protocol compared to the up-regulation protocol;
however, this was not observed. Firing rates during the
association protocol demonstrated little to no modu-
lation (i.e. FRI values close to 1), regardless of
neuron-type (FRI = 1.06±0.13). The inclusion of
control trials involving only auditory cues, or only
visual feedback, or only rewards in future studies will
help to strengthen our assertion that the BMI was
indeed under volitional control.

Conclusion/Clinical Relevance
Fast-spiking and bursting neurons showed high utility,
while regular-spiking neurons showed low utility,
during an operant conditioning BMI protocol involving
up-regulation of neuronal firing rate in a rat model. The
ability to select neurons with high utility in BMI
implementation will be important to potentially mini-
mize training times and maximize information yield in
future clinical applications, such as BMI-controlled

Figure 3 Learning curves and learning indices (LI) for fast-spiking (left), bursting (middle) and regular-spiking (right) neurons during
the up-regulation protocol, corresponding to data from Fig. 2a-g. Each data point represents the moving average across 3 trials, with
66% overlap.
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functional electrical stimulation-based restoration of
grasping function,21 considering that human neuron
types, or their correlates, respond similarly to BMI train-
ing as neuron types found in rats. Albeit preliminary data,
the highly contrasting utility observed presently between
fast-spiking and bursting neurons versus regular-spiking
neurons allows for the hypothesis to be advanced that
intrinsic electrophysiological properties (i.e. waveform-
width and firing patterns) may be useful criteria that
predict neuron utility in BMI implementation.

Abbreviations
BMI Brain-Machine Interface
FRI Firing Rate Index
ISI Interspike Interval
LED Light-Emitting Diode
LI Learning Index
M1 Primary Motor Cortex
SD Standard Deviation
SDnoise SD of the residuals from each waveform after

the average has been subtracted
SNR Signal-to-Noise Ratio
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